A NOTE ON SLIT MAPPINGS

BY DOV AHARONOV

Communicated by Prof. Wolfgang H. Fuchs, February 24, 1969

1. Introduction. Recently the unitary properties of Grunsky's matrix have been studied by several authors. Milin [5] was apparently the first to observe these properties, and Pederson [6], unaware of Milin's work, rediscovered them independently later.

Let $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ be a regular univalent function in the unit circle. The function

$$
\log \frac{f(z)-f(\zeta)}{z-\zeta}=\sum_{n, k=0}^{\infty} d_{n k} z^{n} \zeta^{k}
$$

is then regular in $|z|<1,|\zeta|<1$.
Grunsky's matrix $B=\left(b_{n k}\right), b_{n k}=(n k)^{1 / 2} d_{n k}, n, k=1,2, \cdots$ plays an important role in the theory of univalent functions; for example, simple proofs of the Bieberbach conjecture for $n=4$ were arrived at through its properties [2], [3].

If $1 / f(z)=1 / z+c_{0}+c_{1} z+\cdots$ maps $|z|<1$ onto a domain D such that the area (in the Lebesgue sense) of the complementary of D is zero-then Grunsky's matrix is unitary [5, Theorem 1], [6, Theorem 2.2]. As Milin pointed out, the area of the complementary of D is zero if and only if $\sum_{n=1}^{\infty} n\left|c_{n}\right|^{2}=1$. Following Pederson, these functions $f(z)$ will be referred as "slit mappings."
2. Properties of slit mappings. We now prove the following

Theorem. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is a slit mapping then

$$
\frac{1}{f(z)}=\frac{1}{z}+c_{0}+c_{1} z+\cdots
$$

either is of the form $1 / z+c_{0}+c_{1} z,\left|c_{1}\right|=1$, or there are infinitely many nonvanishing coefficients c_{k}.

Proof. The above theorem may also be formulated in the following way:

If $f(z)$ is a slit mapping such that

$$
\begin{equation*}
\frac{1}{f(z)}=\frac{1}{z}+c_{0}+c_{1} z+\cdots+c_{n} z^{n}, \quad c_{n} \neq 0 \tag{1}
\end{equation*}
$$

then $n=1$ and $\left|c_{1}\right|=1$.

Let

$$
\begin{equation*}
P_{n}\left[\frac{1}{f(z)}\right]=F_{n}(z)=\frac{1}{z^{n}}+\sum_{k=1}^{\infty} c_{n k} z^{k} \tag{2}
\end{equation*}
$$

be the nth Faber polynomial associated with $f(z)$. Then we have by [7]

$$
\begin{equation*}
c_{n k}=-n d_{n k}, \quad n, k=1,2, \cdots \tag{3}
\end{equation*}
$$

In terms of the coefficients $b_{n k}=(n k)^{1 / 2} d_{n k}$, we may write

$$
\begin{equation*}
b_{n k}=-(k / n)^{1 / 2} c_{n k}, \quad n, k=1,2, \cdots \tag{4}
\end{equation*}
$$

By the unitary properties of B, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{k n} b_{j n}=0, \quad k \neq j \tag{5}
\end{equation*}
$$

From (4) and (5) it follows that

$$
\begin{equation*}
\sum_{n=1}^{\infty} n c_{k n} \bar{c}_{j n}=0, \quad k \neq j \tag{6}
\end{equation*}
$$

For proof of our theorem we now assume, to the contrary, that there exist $l>1$ such that

$$
\begin{equation*}
1 / f(z)=1 / z+c_{0}+c_{1} z+\cdots+c_{l} z^{l} \tag{7}
\end{equation*}
$$

where $c_{l} \neq 0$.
Subtitution of $k=1, j=l^{2}$ in (6) yields

$$
\begin{equation*}
\sum_{n=1}^{\infty} n c_{1 n} \bar{c}_{l^{2}, n}=0 \tag{8}
\end{equation*}
$$

Since

$$
P_{1}\left[\frac{1}{f(z)}\right]=\frac{1}{z}+\sum_{k=1}^{\infty} c_{1 k} z^{k}=\frac{1}{f(z)}-c_{0}=\frac{1}{z}+\sum_{k=1}^{l} c_{k} z^{k}
$$

it follows that

$$
\begin{equation*}
c_{1 k}=c_{k}, \quad k=1,2, \cdots, l, \quad c_{1 k}=0 \text { for } k>l \tag{9}
\end{equation*}
$$

From (8) and (9) we obtain

$$
\sum_{n=1}^{l} n c_{1 n} \bar{c}_{l^{2}, n}=0
$$

Since $P_{n}(x)$ is a polynomial of degree n in x, we have by (7), for any natural n,

$$
\begin{gather*}
P_{n}\left[\frac{1}{f(z)}\right]=\frac{1}{z^{n}}+\sum_{k=1}^{l n} c_{n k} z^{k} \tag{10}\\
c_{n, l n}=\left(c_{11}\right)^{n}=\left(c_{l}\right)^{n}, c_{n k}=0 \quad \text { for } k>\ln \tag{11}
\end{gather*}
$$

From the definition of the coefficients $d_{n k}$, it is clear that $d_{n k}=d_{k n}$. Following Schiffer we deduce from (3)

$$
\begin{equation*}
k c_{n k}=n c_{k n}, \quad n, k=1,2, \cdots \tag{12}
\end{equation*}
$$

(This identity was first proved by Grunsky [4] and Schur [8].) From (11) and (12), we have

$$
\begin{equation*}
c_{k n}=0, \quad k>\ln . \tag{13}
\end{equation*}
$$

Substituting $k=l^{2}$ in (13) we get

$$
\begin{equation*}
c_{l^{2}, n}=0, \quad n=1,2, \cdots, l-1 \tag{14}
\end{equation*}
$$

Using (11) for $n=l$ and (12) for $k=l^{2}, n=l$ it follows that

$$
\begin{equation*}
l^{2} c_{l, l^{2}}=l c_{l^{2}, l}=l^{2}\left(c_{l}\right)^{l}=l^{2}\left(c_{1 l}\right)^{l} \tag{15}
\end{equation*}
$$

equations (14) and (15) now yield

$$
\begin{equation*}
\sum_{n=1}^{l} n c_{1 n} \bar{c}_{l^{2}, n}=l^{2} c_{1 l}\left(\bar{c}_{1 l}\right)^{l}=l^{2} c_{l}\left(\bar{c}_{l}\right)^{l} \neq 0 \tag{16}
\end{equation*}
$$

Since this contradicts $\left(8^{\prime}\right)$ we have proved that if $f(z)$ is a slit mapping such that

$$
\frac{1}{f(z)}=\frac{1}{z}+c_{0}+c_{1} z+\cdots+c_{n} z^{n}, \quad c_{n} \neq 0
$$

then necessarily $n=1$. But it follows then, from the condition $\sum_{k=1}^{\infty} k\left|c_{k}\right|^{2}=1$, that $\left|c_{1}\right|=1$, and the proof is complete.

Remark 1. In [1] the author considered properties of slit mappings and proved the above theorem for some particular cases.

Remark 2. The above theorem contains a result of Pederson [6, Theorem 2.3], as a special case.

References

1. D. Aharonov, The Schwarzian derivative and univalent functions, Thesis, Tech-nion-Israel Institute of Technology, 1967.
2. A. Charzynski and M. Schiffer, A new proof of the Bieberbach conjecture for the fourth coefficient, Arch. Rational Mech. Anal. 5 (1960), 187-193.
3. P. R. Garabedian, G. G. Ross and M. Schiffer, On the Bieberbach conjecture for even n, J. Math. Mech. 14 (1965), 975-988.
4. H. Grunsky, Koeffizientenbedingungen für Scklicht abbildende meromorphe Funktionen, Math. Z. 45 (1939), 29-61.
5. I. M. Milin, The area method in the theory of univalent functions, Dokl. Akad. Nauk SSSR 154 (1964), 264-267 =Soviet Math. Dokl. 5 (1964), 78-81.
6. R. N. Pederson, On unitary properties of Grunsky's matrix, Arch. Rational Mech. Anal. 29 (1968), 370-377.
7. M. Schiffer Faber polynomials in the theory of univalent functions, Bull. Amer. Math. Soc. 54 (1948), 503-517.
8. I. Schur, On faber polynomials, Amer. J. Math. 67 (1945), 33-41.

Israel Institute of Technology, Technion, Haifa, Israel

