A NOTE ON FUNCTORS Ext OVER THE RING Z^{1}

By Keean lee
Communicated by Saunders MacLane, December 11, 1968

Let A and B be modules over the ring Z of all integers. In this paper, we shall define a new homomorphism

$$
\Gamma: B \otimes_{Z} \operatorname{Hom}_{Z}(A, Q / Z) \rightarrow \operatorname{Ext}_{Z}^{1}(A, B)
$$

by $\Gamma(b \otimes h)=b E_{0} h$, for each $b \otimes h \in B \otimes_{Z} \operatorname{Hom}_{Z}(A, Q / Z)$ and check the properties of Γ, where $E_{0}: 0 \rightarrow Z \rightarrow Q \rightarrow Q / Z \rightarrow 0$ is the familiar exact sequence and Q is the field of all rational numbers.

For convenience, in sequel we shall use \otimes, Hom and Ext for \otimes_{z}, Hom_{z} and Ext_{Z}^{1}, respectively, and A, B as Z-modules.

The idea of this paper was obtained from a suggestion of Professor S. MacLane. I would like to express my gratitude to him for kind help and guidance.

The detailed definition of Γ is described by the diagram with each commutative square

for each $b \otimes h \in B \otimes \operatorname{Hom}(A, Q / Z)$, where $b \in B$ is a homomorphism from Z to B such that $b(1)=b$.

By the standard methods as in [3] we know that for $b_{i}(i=0,1,2)$ in B and $h_{i}(i=0,1,2)$ in $\operatorname{Hom}(A, Q / Z)\left(b_{1}+b_{2}\right) E_{0} h_{0}=b_{1} E_{0} h_{0}+b_{2} E_{0} h_{0}$, $b_{0} E_{0}\left(h_{1}+h_{2}\right)=b_{0} E_{0} h_{1}+b_{0} E_{0} h_{2}$. Furthermore, for each $f: A_{2} \rightarrow A_{1}$ and $g: B_{1} \rightarrow B_{2}$, where $A_{i}(i=1,2)$ and $B_{i}(i=1,2)$ are Z-modules, we get the Z-homomorphisms
$f_{H}^{*}: \operatorname{Hom}\left(A_{1}, Q / Z\right) \rightarrow \operatorname{Hom}\left(A_{2}, Q / Z\right), \quad f_{E}^{*}: \operatorname{Ext}\left(A_{1}, B\right) \rightarrow \operatorname{Ext}\left(A_{2}, B\right)$

$$
g_{E}^{*}: \operatorname{Ext}\left(A, B_{1}\right) \rightarrow \operatorname{Ext}\left(A, B_{2}\right)
$$

and in this case we also know that for each $b \otimes h_{1} \in B \otimes \operatorname{Hom}\left(A_{1}, Q / Z\right)$ and $b_{1} \otimes h \in B_{1} \otimes \operatorname{Hom}(A, Q / Z)$

[^0]\[

$$
\begin{aligned}
& f_{E}^{*} \cdot \Gamma\left(b \otimes h_{1}\right)=b E_{0}\left(h_{1} f\right)=\Gamma \cdot 1_{B} \otimes f_{H}^{*}\left(b \otimes h_{1}\right), \\
& g_{E}^{*} \cdot \Gamma\left(b_{1} \otimes h\right)=g\left(b_{1}\right) E_{0} h=\Gamma \cdot g \otimes 1_{H}\left(b_{1} \otimes h\right)
\end{aligned}
$$
\]

where $1_{H}: \operatorname{Hom}(A, Q / Z) \rightarrow \operatorname{Hom}(A, Q / Z)$ is the identity map. This description implies that Γ is natural in each argument.

In general Γ is not an isomorphism because if we take $A=Z$ then $\operatorname{Ext}(A, B)=\operatorname{Ext}(Z, A)=0$ and $B \otimes \operatorname{Hom}(A, Q / Z)=B \otimes \operatorname{Hom}(Z, Q / Z)$ $\neq 0$ when B is not divisible. As a special case the following holds.

Theorem 1. If A is a cyclic Z-module $Z_{m}(a)$ of order m with generator a then Γ is an isomorphism.

Proof. To prove this theorem we should define an isomorphism

$$
\eta: B \otimes \operatorname{Hom}\left(Z_{m}(a), Q / Z\right) \rightarrow \operatorname{Ext}(A, B)
$$

by the following way.
First step. Define $\eta_{1}: B \otimes \operatorname{Hom}\left(Z_{m}(a), Q / Z\right) \rightarrow B / m B$ by $\eta_{1}(b \otimes r)$ $=\eta_{1}\left(r b \otimes \alpha_{m}\right)=r b+m B$ for each $b \otimes r \in B \otimes \operatorname{Hom}\left(Z_{m}(a), Q / Z\right)$, where $m B=\{m b \mid b \in B\}$ and

$$
\begin{gathered}
r: Z_{m}(a) \rightarrow Q / Z \quad \text { such that } \quad r(a)=\frac{r}{m}, \\
\alpha_{m}: Z_{m}(a) \rightarrow Q / Z \quad \text { such that } \quad \alpha_{m}(a)=\frac{1}{m}
\end{gathered}
$$

If we define $\eta_{1}^{-1}: B / m B \rightarrow B \otimes \operatorname{Hom}\left(Z_{m}(a), Q / Z\right)$ by $\eta_{1}^{-1}(b+m B)$ $=b \otimes \alpha_{m}$ for each $b+m B \in B / m B$ then we know that $\eta_{1}^{-1} \eta_{1}=$ the identity map in $B \otimes \operatorname{Hom}(A, Q / Z), \eta_{1} \eta^{-1}=$ the identity map in $B / m B$ which implies that η_{1} is an isomorphism.

Second step. Define $\eta_{2}: B / m B \rightarrow \operatorname{Ext}\left(Z_{m}(a), B\right)$ by $\eta_{2}(b+m B)=E_{b}$ for each $b+m B \in B / m B$, where $E_{b}: 0 \rightarrow B^{\kappa} \rightarrow E_{b}{ }^{\sigma}{ }^{\sigma} Z_{m}($ a $) \rightarrow 0$ (exact) such that for $\sigma(u)=a\left(u \in E_{b}\right) \kappa(b)=m u$. Then η_{2} is an isomorphism (see Proposition 1.1 on p. 64 of [3]).

Third step. We shall define $\eta=\eta_{2} \eta_{1}$ by $\eta(b \otimes r)=\eta\left(r b \otimes \alpha_{m}\right)=E_{r b}$ for each $b \otimes r \in B \otimes \operatorname{Hom}\left(Z_{m}(a), Q / Z\right)$, i.e.,

$$
\begin{gathered}
\eta=\eta_{2} \eta_{1}: B \otimes \operatorname{Hom}\left(Z_{m}(a), Q / Z\right) \rightarrow B / m B \rightarrow \operatorname{Ext}\left(Z_{m}(a), B\right) \\
b \otimes r=r b \otimes \alpha_{m} \mapsto r b+m B \mapsto E_{r b}
\end{gathered}
$$

then η is an isomorphism.
Using η we shall verify our theorem. To do so, we have to prove that $\Gamma=\eta$ by showing that $E_{r b}=b E_{0} r$. By our definitions we get that

$$
\begin{gathered}
E_{r b}: \quad 0 \rightarrow B \rightarrow E_{r b} \rightarrow Z_{m}(a) \rightarrow 0 \text { (exact) } \\
\Psi \quad U
\end{gathered}
$$

$$
\begin{array}{ccc}
U & u & \mapsto \\
r b_{1} \mapsto m u & a \\
& \mapsto & 0
\end{array}
$$

and

$$
\begin{aligned}
& b E_{0} r: \quad 0 \rightarrow B \longrightarrow D_{2} \longrightarrow Z_{m}(a) \rightarrow 0 \text { (exact) } \\
& U \\
& \text { U } \\
& \left(0,\left(\frac{r}{m}, a\right)\right) \mapsto \quad a \\
& \text { (} 0,(r, 0) \text {) } \\
& \text { U } \\
& \text { \| } \\
& r b \mapsto \quad(r b, 0) \quad \rightarrow \quad 0
\end{aligned}
$$

because $(0,(r, 0))=(r b, 0)$ in D_{2} (see the first part of this paper). Therefore $E_{r b}=b E_{0} r$ for each $b \otimes r \in B \otimes \operatorname{Hom}(A, Q / Z)$, which means $\eta=\Gamma$, and we complete our proof.

Let A be finite then A is a direct sum of a finite number of cyclic Z-modules, i.e., $A=\sum_{i=1}^{n} Z_{m_{i}}\left(Z_{m_{i}}\right.$: cyclic Z-module of order $\left.m_{i}\right)$. Using Theorem 1 the following is easily proved.

Corollary 1. With the above situation

$$
\Gamma: B \otimes \operatorname{Hom}\left(\sum_{i=1}^{n} Z_{m_{i}}, Q / Z\right) \rightarrow \operatorname{Ext}\left(\sum_{i=1}^{n} Z_{m_{i}}, B\right)
$$

is an isomorphism. (Note: $\operatorname{Hom}(A \oplus B, C)=\operatorname{Hom}(A, C) \oplus \operatorname{Hom}(B, \mathrm{C})$ and $\operatorname{Ext}(A \oplus B, C)=\operatorname{Ext}(A, C) \oplus \operatorname{Ext}(B, C)$.)

Corollary 2. If $A=\sum_{\alpha} A_{\alpha}$ (direct sum) and B is finitely generated then $\Gamma: \mathrm{B} \otimes \operatorname{Hom}(A, Q / Z) \rightarrow \operatorname{Ext}(A, B)$ is an isomorphism, where each A_{α} is finite.

Proof. We know that

$$
\begin{aligned}
\operatorname{Hom}\left(\sum_{\alpha} A_{\alpha}, Q / Z\right) & \cong \prod_{\alpha} \operatorname{Hom}\left(A_{\alpha}, Q / Z\right), \\
\operatorname{Ext}\left(\sum_{\alpha} A_{\alpha}, B\right) & \cong \prod_{\alpha} \operatorname{Ext}\left(A_{\alpha}, B\right)
\end{aligned}
$$

(see pp. 97-98 of [1]) and

$$
B \otimes \prod_{\alpha} \operatorname{Hom}(A, Q / Z) \cong \prod_{\alpha}\left(B \otimes \operatorname{Hom}\left(A_{\alpha}, Q / Z\right)\right)
$$

because B is finitely generated (see p. 32 of [1]). By Corollary 1 for each $\alpha \Gamma \alpha: B \otimes \operatorname{Hom}\left(A_{\alpha}, Q / Z\right) \rightarrow \operatorname{Ext}\left(A_{\alpha}, B\right)$ is an isomorphism and therefore Γ is also an isomorphism.

Next, we shall consider the case which A is an infinite torsion module, i.e., $A=\operatorname{inj} \lim _{\alpha} A_{\alpha}\left(A_{\alpha}\right.$: finite). In this case, in general

$$
\Gamma: \quad B \otimes \operatorname{Hom}(A, Q / Z) \rightarrow \operatorname{Ext}(A, B)
$$

is not an isomorphism as in the following example.
Example. Set $B=Q$ and $A=Q / Z$. Since Q / Z is divisible $\operatorname{Hom}(Q / Z, Q / Z)$ is torsion-free (see Corollary 1.5 on p. 128 of [1]). Therefore $Q \otimes \operatorname{Hom}(Q / Z, Q / Z) \neq 0$. On the other hand $\operatorname{Ext}(Q / Z, Q)$ $=0$ (Q is injective). This shows that Γ is not an isomorphism. But the following holds.

Theorem 2. If A is an infinite torsion module and B is finitely generated then Γ is an isomorphism.

Proof. Put $A=\operatorname{inj} \lim _{\alpha} A_{\alpha}\left(A_{\alpha}\right.$: finite). Let us assume $\phi_{\alpha^{\prime} \alpha}: A_{\alpha}$ $\rightarrow A_{\alpha^{\prime}}$ for $\alpha<\alpha^{\prime}$ and $\phi_{\alpha}: A_{\alpha} \rightarrow A$ (injection) such that $\phi_{\alpha^{\prime}} \phi_{\alpha^{\prime} \alpha}=\phi_{\alpha}$. We then have the commutative diagram

Therefore there exists a unique homomorphism θ as in the diagram with each triangle commutative

where ϕ_{α}^{\prime} and $\phi_{\alpha^{\prime}}^{\prime}$ are projections. On the other hand, since

$$
\Gamma_{\alpha}: \quad B \otimes \operatorname{Hom}\left(A_{\alpha}, Q / Z\right) \rightarrow \operatorname{Ext}\left(A_{\alpha}, B\right),
$$

for each α, is an isomorphism by Corollary 1 we have the isomorphism $\operatorname{proj} \lim _{\alpha} \Gamma_{\alpha}: \operatorname{proj} \lim _{\alpha}\left(B \otimes \operatorname{Hom}(A, Q / Z) \cong \operatorname{proj} \lim _{\alpha} \operatorname{Ext}\left(A_{\alpha}, B\right)\right.$. Therefore, by the definition of the inverse limits and the naturality of Γ we have two commutative diagrams

and
$B \otimes \operatorname{Hom}\left(A_{\alpha}, B\right) \longleftarrow \operatorname{proj} \lim _{\alpha}\left(B \otimes \operatorname{Hom}\left(A_{\alpha}, Q / Z\right)\right) \longrightarrow B \otimes \operatorname{Hom}\left(A_{\alpha}, Q / Z\right)$

$$
\cong \downarrow \Gamma_{\alpha}
$$

$\cong \downarrow \operatorname{proj} \lim _{\alpha} \Gamma_{\alpha}$
$\xrightarrow{{ }_{\alpha^{\prime}}^{\prime \prime}} \begin{gathered}\cong \downarrow \Gamma_{\alpha^{\prime}} \\ \\ \operatorname{Ext}\left(A_{\alpha}, Q / Z\right),\end{gathered}$
where $\phi_{\alpha}^{\prime \prime}$ and $\phi_{\alpha^{\prime}}^{\prime \prime}$ are projections.
Moreover, by the naturality of Γ the diagram

$$
\begin{array}{cc}
B \otimes \operatorname{Hom}\left(A_{\alpha}, Q / Z\right) & 1_{B} \otimes \operatorname{Hom}\left(\phi_{\alpha}^{\prime}, Q / Z\right) \\
\Gamma_{u} \downarrow & \\
\operatorname{Ext}\left(A_{\alpha}, B\right) & \operatorname{Hom}(A, Q / Z) \\
\downarrow \Gamma \\
\operatorname{Ext}\left(\phi_{a}, B\right) & \operatorname{Ext}(A, B)
\end{array}
$$

is commutative. We then have the commutative diagram:

By our hypothesis $\xi: \operatorname{Ext}(A, B) \cong \operatorname{proj} \lim _{\alpha} \operatorname{Ext}\left(A_{\alpha}, B\right)$ (see page 793 of [2]) and proj $\lim _{\alpha} \Gamma_{\alpha} \cdot \theta: B \otimes \operatorname{Hom}(A, Q / Z)=\operatorname{proj} \lim _{\alpha} \operatorname{Ext}\left(A_{\alpha}, B\right)$ (Note: $\operatorname{proj} \lim _{\alpha}\left(B \otimes \operatorname{Hom}\left(A_{\alpha}, Q / Z\right)\right) \cong \operatorname{proj}_{\lim _{\alpha}} \operatorname{Ext}\left(A_{\alpha}, B\right)$ and B is finitely generated (see p. 32 of [1]). Therefore Γ is an isomorphism, as asserted.

References

1. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956.
2. S. Eilenberg and S. MacLane, Group extensions and homology, Ann. of Math. (2) 43 (1942), 758-831.
3. S. MacLane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, N. Y. and Springer-Verlag, Berlin, 1963; Russian transl., IL.. Moscow, 1965.

Hanyang University, Seoul, Korea

[^0]: ${ }^{1}$ This research supported in part by the Office of Naval Research.

