CERTAIN MAPPINGS OR DECOMPOSITIONS WHICH ARE TOPOLOGICALLY PROJECTIONS

BY LOUIS F. MCAULEY ${ }^{1}$
Communicated by Richard Anderson, January 20, 1969

Introduction. A general question which is of interest is the following. Suppose that f is a mapping of a compact metric continuum X onto a metric space Y. Under what conditions is there an embedding of X and Y in E^{n} (Euclidean n-space) or H^{ω} (Hilbert space) so that f is topologically equivalent to a projection onto Y defined by some collection of parallel hyperplanes? Theorem 1 below provides an answer for a very special case of this general question. Although this theorem is actually a corollary of a more general theorem, we feel that its proof provides motivation and understanding for the main theorem.

Theorem 1. Suppose that U is the Universal 1-dimensional Menger Curve [1] and that f is a light open mapping of U onto I (the interval $[0,1])$ such that $f^{-1}(x)$ is homeomorphic to a Cantor set for each x in I. Then there is a homeomorphism h of U into E^{3} such that the mapping p defined by projecting U onto I through planes parallel to the $y z$-plane is topologically equivalent to f, that is, $p h=f$.

We shall sketch a proof of this theorem. Our proof depends on an important theorem of J. H. Roberts [5] concerning contractibility in spaces of homeomorphisms, some very useful techniques of Dyer and Hamstrom [2], and a powerful selection theorem of E. A. Michael [4].

Statements of some results used in our proofs. Suppose that X is a compact metric space and dimension $X=n$ (an integer). For each positive integer k, let $H\left(X, I^{k}\right)$ be the space of all homeomorphisms of X into I^{k} (a k-cell) and let $C\left(X, I^{k}\right)$ be the space of all mappings of X into I^{k}. The metric, in each case, is the usual one: $\rho(f, g)=$ $\max d(f(x), g(x))$ for x in X and d is the usual metric for I^{k}.

Theorem (J. H. Roberts [5]). Suppose that each of X and K is a compact metric space, $\operatorname{dim} X=n, \operatorname{dim} K=r$, and $k \geqq 2 n+2+r$. Let α_{0} and α_{1} be mappings of K into $C\left(X, I^{k}\right)$. Then there exists a homotopy $f: K \times I \rightarrow C\left(X, I^{k}\right)$ such that
(1) $f(\omega, 0)=\alpha_{0}(\omega), f(\omega, 1)=\alpha_{1}(\omega), \omega \in K$, and
(2) for each $t, 0<t<1, f(\omega, t) \in H\left(X, I^{k}\right)$.

[^0]Theorem (E. A. Michael [4]). If each of A and B is a metric space, A is complete, covering dimension of $B \leqq n+1, Z$ is a closed subset of B, F is a function taking A onto B such that the collection of inverses under F is lower semicontinuous (defined below) and equi-LCn (as defined below), and f is a mapping of Z into A such that for z in Z, $f(z) \in F^{-1}(z)$, then there is a neighborhood U of Z in B such that f can be extended to a mapping f^{*} of U into A such that for $b \in U, f^{*}(b) \in F^{-1}(b)$. If each inverse under F has the property that its homotopy groups of order $\leqq n$ vanish, then U may be taken to be the space B.

Notation and definitions. In this paper, all mappings are continuous and all spaces are metric. A mapping f of a space X into a space Y is light iff $f^{-1} f(x)$ is totally disconnected for each x in X. And, f is open iff for each U open in $X, f(U)$ is open relative to $f(X)$. A characterization of the Universal 1-dimensional Curve U may be found in R. D. Anderson's paper [1].

Definition (Dyer and Hamstrom [2]). A mapping $p: T \rightarrow B$ is said to be completely regular iff for each $\epsilon>0$ and each point b in B, there is a $\delta>0$ such that if $x \in B$ and $d(x, b)<\delta$, then there exists a homeomorphism $h_{b x}$ of $p^{-1}(b)$ onto $p^{-1}(x)$ which moves no point as much as ϵ.

Definition. A collection G of closed point sets filling a metric space X (i.e., the union of the elements of G is X) is said to be equi$L C^{n}$ iff for each $\epsilon>0, g$ in G, and $x \in g$, there is a $\delta>0$ such that if $h \in G$ and f is a mapping of a k-sphere $S^{k}, 0 \leqq k \leqq n$ into $h \cap N_{\delta}(x)$, then there is an extension F of f to the ($k+1$)-disk D^{k+1}, into $h \cap N_{\epsilon}(x)$.

The hypothesis of Theorem 1 is not vacuously satisfied. Such mappings are easy to construct.

Indication of a proof of Theorem 1. Let A denote a unit cube (3-cell) in E^{3} whose vertices are ($0,0,0$), ($0,0,1$), ($0,1,0$), ($1,0,0$), $(1,0,1),(0,1,1),(1,1,0)$, and $(1,1,1)$. Let C_{x} denote a 2 -cell section of A cut by the plane perpendicular to the x-axis at x.

For each x, let $H\left(f^{-1}(x), C_{x}\right)$ denote the space of all homeomorphisms of $f^{-1}(x)$ into C_{x}. For convenience, we shorten this to H_{x}. We use the usual metric on H_{x}, i.e., for g, h in $H_{x}, \rho(g, h)=\max \{\rho[g(x), H(x)]\}$. Now, H_{x} is a topologically complete metric space.

Consider the collection H of all H_{x} and let H^{*} denote the union of the elements of H. The space H^{*} is a topologically complete metric space. This follows from a theorem in [3]. However, we shall indicate here how a metric may be defined.

A metric for H^{*}. If $g \in H^{*}$, then $g \in H_{x}$ for some x. Let \hat{g} denote
the graph of g in $U \times C$ where C is a 2-cell. For each pair of elements g, h of H^{*} where $g \in H_{x}$ and $h \in H_{y}$, let $D(g, h)=$ Hausdorff distance between \hat{g} and \hat{h}. Although D is a metric for H^{*}, it may not be complete. However, H^{*} is a topologically complete metric space. This follows from Theorem 1 of [3].

By a theorem of Roberts [5], H_{x} for each x is locally connected. The collection H of all H_{x} is equi-locally connected in the homotopy sense (equi- $L C^{0}$). That is, for each $H_{x}, p \in H_{x}$, and $\epsilon>0$, there is a $\delta>0$ such that if ϕ is a mapping of S^{0} (a 0 -sphere or pair of points) into $N_{\delta}(p) \cap H_{y}$ for H_{y} in H, then ϕ can be extended to a mapping Φ which takes a 1-cell into $N_{\epsilon}(p) \cap H_{y}$. This may be proved by first showing that f is actually completely regular. Next, apply an argument similar to Dyer and Hamstrom [2] or to mine in [3].

Let H^{*} be the union of the elements of H and F denote the function from H^{*} onto $I=[0,1]$ such that $F^{-1}(x)=H_{x}$. It follows that F is lower semicontinuous. That is, if $\left\{h_{i}\right\} \rightarrow h$ where $h_{i}, h \in H$, then H_{h} is in the closure of $\bigcup_{i=1}^{\infty} H_{h_{i}}$. See [3, p. 137]. Now by a selection theorem of Michael [4], there is a continuous selection Φ from an open interval (a, b) to H^{*} such that $\Phi(x) \in F^{-1}(x)=H_{x}$. By Corollary 2 of [5], $F^{-1}(x)$ for each x in I is arcwise connected. Thus, by Michael's Theorem [4, p. 563], (a, b) may be taken as the space $[0,1]$. The mapping Φ induces a homeomorphism h from $f^{-1}[0,1]=U$ into A (a 3-cell) such that $h \mid f^{-1}(x)=\Phi(x)$. That is, for u in U, $h(u)=\Phi[f(u)](u)$. It follows that $f=p h$ where p is the projection of A onto I by planes parallel to the $y z$-plane. The theorem is proved.

Remarks. Projections need not be local products (locally trivial fiber spaces), even in the case that $p: X \rightarrow Y$ has the property that all sets $p^{-1} p(x)$ are homeomorphic for the various $x \in X, X$ is a Peano continuum, p is open, and p is monotone. See Ungar's example [6].

Main theorem. Now, we are ready to state the general theorem for which Theorem 1 is a special case.

Theorem 2. Suppose that $f: X \Rightarrow I^{r+1}$ is a completely regular mapping, X is a complete metric space, for each x in $X, f^{-1} f(x) \cong K, a$ compact n-dimensional set. Let $k \geqq 2 n+2+r$. Then there is a homeomorphism h of X into I^{k+r+1} such that $f=p h$ where p is the projection mapping of $I^{k} \times I^{r+1}$ onto I^{r+1}.

It should be clear from the indicated proof of Theorem 1 that a similar argument yields Theorem 2.

Bibliography

1. R. D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math. (2) 67 (1958), 313-324.
2. Eldon Dyer and M. E. Hamstrom, Completely regular mappings, Fund. Math. 45 (1957), 103-118.
3. L. F. McAuley, The existence of a complete metric for a special mapping space and some consequences, Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N. J., 1966, pp. 135-139.
4. E. A. Michael, Continuous selections. I, II, III, Ann. of Math. (2) 63 (1956), 361-382; (2) 64 (1956), 562-580; (2) 65 (1957), 357-390.
5. J. H. Roberts, Contractibility in spaces of homeomorphisms, Duke Math. J. 28 (1961), 213-220.
6. Gerald S. Ungar, A pathological fiber space, Illinois J. Math. 12 (1968), 623-625.

Rutgers University, New Brunswick, New Jersey 08903

[^0]: ${ }^{1}$ Research supported in part by NSF Grant GP 6951.

