CERTAIN MAPPINGS OR DECOMPOSITIONS WHICH ARE TOPOLOGICALLY PROJECTIONS

BY LOUIS F. MCAULEY¹

Communicated by Richard Anderson, January 20, 1969

Introduction. A general question which is of interest is the following. Suppose that f is a mapping of a compact metric continuum Xonto a metric space Y. Under what conditions is there an embedding of X and Y in E^n (Euclidean n-space) or H^ω (Hilbert space) so that f is topologically equivalent to a projection onto Y defined by some collection of parallel hyperplanes? Theorem 1 below provides an answer for a very special case of this general question. Although this theorem is actually a corollary of a more general theorem, we feel that its proof provides motivation and understanding for the main theorem.

THEOREM 1. Suppose that U is the Universal 1-dimensional Menger Curve [1] and that f is a light open mapping of U onto I (the interval [0, 1]) such that $f^{-1}(x)$ is homeomorphic to a Cantor set for each x in I. Then there is a homeomorphism h of U into E^3 such that the mapping p defined by projecting U onto I through planes parallel to the yz-plane is topologically equivalent to f, that is, ph=f.

We shall sketch a proof of this theorem. Our proof depends on an important theorem of J. H. Roberts [5] concerning contractibility in spaces of homeomorphisms, some very useful techniques of Dyer and Hamstrom [2], and a powerful selection theorem of E. A. Michael [4].

Statements of some results used in our proofs. Suppose that X is a compact metric space and dimension X = n (an integer). For each positive integer k, let $H(X, I^k)$ be the space of all homeomorphisms of X into I^k (a k-cell) and let $C(X, I^k)$ be the space of all mappings of X into I^k . The metric, in each case, is the usual one: $\rho(f, g) =$ max d(f(x), g(x)) for x in X and d is the usual metric for I^k .

THEOREM (J. H. ROBERTS [5]). Suppose that each of X and K is a compact metric space, dim X = n, dim K = r, and $k \ge 2n+2+r$. Let α_0 and α_1 be mappings of K into $C(X, I^k)$. Then there exists a homotopy $f:K \times I \rightarrow C(X, I^k)$ such that

(1) $f(\omega, 0) = \alpha_0(\omega), f(\omega, 1) = \alpha_1(\omega), \omega \in K, and$

(2) for each t, 0 < t < 1, $f(\omega, t) \in H(X, I^k)$.

¹ Research supported in part by NSF Grant GP 6951.

THEOREM (E. A. MICHAEL [4]). If each of A and B is a metric space, A is complete, covering dimension of $B \le n+1$, Z is a closed subset of B, F is a function taking A onto B such that the collection of inverses under F is lower semicontinuous (defined below) and equi-LCⁿ (as defined below), and f is a mapping of Z into A such that for z in Z, $f(z) \in F^{-1}(z)$, then there is a neighborhood U of Z in B such that f can be extended to a mapping f^* of U into A such that for $b \in U, f^*(b) \in F^{-1}(b)$. If each inverse under F has the property that its homotopy groups of order $\le n$ vanish, then U may be taken to be the space B.

Notation and definitions. In this paper, all mappings are continuous and all spaces are metric. A mapping f of a space X into a space Y is light iff $f^{-1}f(x)$ is totally disconnected for each x in X. And, f is open iff for each U open in X, f(U) is open relative to f(X). A characterization of the Universal 1-dimensional Curve U may be found in R. D. Anderson's paper [1].

DEFINITION (DYER AND HAMSTROM [2]). A mapping $p:T \rightarrow B$ is said to be *completely regular* iff for each $\epsilon > 0$ and each point b in B, there is a $\delta > 0$ such that if $x \in B$ and $d(x, b) < \delta$, then there exists a homeomorphism h_{bx} of $p^{-1}(b)$ onto $p^{-1}(x)$ which moves no point as much as ϵ .

DEFINITION. A collection G of closed point sets filling a metric space X (i.e., the union of the elements of G is X) is said to be equi- LC^n iff for each $\epsilon > 0$, g in G, and $x \in g$, there is a $\delta > 0$ such that if $h \in G$ and f is a mapping of a k-sphere S^k , $0 \le k \le n$ into $h \cap N_{\delta}(x)$, then there is an extension F of f to the (k+1)-disk D^{k+1} , into $h \cap N_{\epsilon}(x)$.

The hypothesis of Theorem 1 is not vacuously satisfied. Such mappings are easy to construct.

Indication of a proof of Theorem 1. Let A denote a unit cube (3-cell) in E^3 whose vertices are (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0), and (1, 1, 1). Let C_x denote a 2-cell section of A cut by the plane perpendicular to the x-axis at x.

For each x, let $H(f^{-1}(x), C_x)$ denote the space of all homeomorphisms of $f^{-1}(x)$ into C_x . For convenience, we shorten this to H_x . We use the usual metric on H_x , i.e., for g, h in H_x , $\rho(g, h) = \max \{\rho[g(x), H(x)]\}$. Now, H_x is a topologically complete metric space.

Consider the collection H of all H_x and let H^* denote the union of the elements of H. The space H^* is a topologically complete metric space. This follows from a theorem in [3]. However, we shall indicate here how a metric may be defined.

A metric for H^* . If $g \in H^*$, then $g \in H_x$ for some x. Let \hat{g} denote

942

the graph of g in $U \times C$ where C is a 2-cell. For each pair of elements g, h of H^* where $g \in H_x$ and $h \in H_y$, let D(g, h) = Hausdorff distance between \hat{g} and \hat{h} . Although D is a metric for H^* , it may not be complete. However, H^* is a topologically complete metric space. This follows from Theorem 1 of [3].

By a theorem of Roberts [5], H_x for each x is locally connected. The collection H of all H_x is equi-locally connected in the homotopy sense (equi- LC^0). That is, for each H_x , $p \in H_x$, and $\epsilon > 0$, there is a $\delta > 0$ such that if ϕ is a mapping of S^0 (a 0-sphere or pair of points) into $N_{\delta}(p) \cap H_y$ for H_y in H, then ϕ can be extended to a mapping Φ which takes a 1-cell into $N_{\epsilon}(p) \cap H_y$. This may be proved by first showing that f is actually completely regular. Next, apply an argument similar to Dyer and Hamstrom [2] or to mine in [3].

Let H^* be the union of the elements of H and F denote the function from H^* onto I = [0, 1] such that $F^{-1}(x) = H_x$. It follows that F is lower semicontinuous. That is, if $\{h_i\} \rightarrow h$ where $h_i, h \in H$, then H_h is in the closure of $\bigcup_{i=1}^{\infty} H_{h_i}$. See [3, p. 137]. Now by a selection theorem of Michael [4], there is a continuous selection Φ from an open interval (a, b) to H^* such that $\Phi(x) \in F^{-1}(x) = H_x$. By Corollary 2 of [5], $F^{-1}(x)$ for each x in I is arcwise connected. Thus, by Michael's Theorem [4, p. 563], (a, b) may be taken as the space [0, 1]. The mapping Φ induces a homeomorphism h from $f^{-1}[0, 1] = U$ into A (a 3-cell) such that $h|f^{-1}(x) = \Phi(x)$. That is, for u in U, $h(u) = \Phi[f(u)](u)$. It follows that f = ph where p is the projection of A onto I by planes parallel to the yz-plane. The theorem is proved.

REMARKS. Projections need not be local products (locally trivial fiber spaces), even in the case that $p: X \to Y$ has the property that all sets $p^{-1}p(x)$ are homeomorphic for the various $x \in X$, X is a Peano continuum, p is open, and p is monotone. See Ungar's example [6].

Main theorem. Now, we are ready to state the general theorem for which Theorem 1 is a special case.

THEOREM 2. Suppose that $f: X \Longrightarrow I^{r+1}$ is a completely regular mapping, X is a complete metric space, for each x in X, $f^{-1}f(x) \cong K$, a compact n-dimensional set. Let $k \ge 2n+2+r$. Then there is a homeomorphism h of X into I^{k+r+1} such that f = ph where p is the projection mapping of $I^k \times I^{r+1}$ onto I^{r+1} .

It should be clear from the indicated proof of Theorem 1 that a similar argument yields Theorem 2.

L. F. McAULEY

BIBLIOGRAPHY

1. R. D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math. (2) 67 (1958), 313-324.

2. Eldon Dyer and M. E. Hamstrom, *Completely regular mappings*, Fund. Math. 45 (1957), 103-118.

3. L. F. McAuley, The existence of a complete metric for a special mapping space and some consequences, Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N. J., 1966, pp. 135–139.

4. E. A. Michael, *Continuous selections*. I, II, III, Ann. of Math. (2) 63 (1956), 361-382; (2) 64 (1956), 562-580; (2) 65 (1957), 357-390.

5. J. H. Roberts, Contractibility in spaces of homeomorphisms, Duke Math. J. 28 (1961), 213-220.

6. Gerald S. Ungar, A pathological fiber space, Illinois J. Math. 12 (1968), 623-625.

RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903