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In a paper tha t appeared in Mathematische Annalen in 1968, 
E. L. Stout proved a generalization of a theorem of Rado which states 
that if ƒ is continuous on the set D = {z: \z\ < 1} and holomorphic on 
-D—/-1(0), then ƒ is holomorphic on D. Stout's generalization is as 
follows : 

THEOREM. Let E be a set of capacity zero in the complex plane, and 
let E0 be a relatively closed set in D. If f is a function bounded and holo
morphic in D—E0, if f does not vanish identically, and if for every 
sequence {zn} in D — E0 such that zn—*ZoÇzEo and lim ƒ(zn) = w0 exists 
it is the case that WOELE, then f is holomorphic throughout D. 

We shall generalize this theorem by replacing D by an arbitrary 
hyperbolic Riemann surface and replacing the assumption that ƒ is 
bounded by the assumption that ƒ belong to the Hardy class Hp, 
0 < P ^ o o , i.e., tha t \f\p possesses a harmonic majorant. Thus our 
theorem reads as follows: 

THEOREM. Let E be a set of capacity zero in the complex plane, 
and let E0 be a closed subset of a hyperbolic Riemann surface R. If 
f£:Hp(R — Eo), i.e., ƒ is of class Hp on each component of R — E0, 
0 < P ^ oo, iffis nonconstant on some component of R — E0, and if for 
every sequence {an} in R—E0 such that an—>a0£-Eo and limf(an) =b0 

exists it is the case that boÇîE, then f is holomorphic throughout D. 

REMARK. In the proof we shall use the same notation and termi
nology in [ l ] and [2]. 

PROOF. Let S = R—E0 and let So be a component of S on which ƒ 
is nonconstant. I t then follows that 5 0 is hyperbolic and that its 
universal covering surface is D. Let w denote the projection map of D 
onto So. Since w is a Fatou mapping, the fine limit function it is de
fined a.e. on dD. Here a.e. refers to Lebesgue measure. Since D is a 
regular covering surface of S0, it follows that every point P' in So has 
a neighborhood V with the property that each component of 7r'~1(F) 
is compact. Hence w is of Blaschke type. I t follows that for a.e. point 
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bÇzdD, it(b) is defined and lies in the minimal Martin boundary of 50 . 
Let us now regard IT as a mapping of D into R. w is still a Fatou map
ping and hence T is defined a.e. on dD. Consequently for a.e. &£3Z>, 
w(b) is defined and either lies in Ai, the minimal Martin boundary of 
R, or else lies in E0. Since fÇE.Hp(So), ƒ is a Fatou mapping and hence 
ƒ o 7T is a Fatou mapping. Hence (ƒ o w) * is defined a.e. on 3D. If the 
set of points è£dZ) where 7t(b) is defined and lies in E0, is of positive 
Lebesgue measure, then the set of points ƒ(#(&)) = (ƒ o x)"(&) would 
have to be of positive capacity, since ƒ is nonconstant, by a theorem 
of Doob; but on the other hand it would have to be of capacity zero 
since by hypothesis this set would have to be contained in E, and E 
has capacity zero. Hence w regarded as a mapping of D into R is of 
Blaschke type and hence by a theorem of Heins, E0 is a set of capacity 
zero. Hence by a theorem of Parreau, ƒ has a holomorphic extension 
toR. 

REMARK. Actually, more is true. Thus R — E0 is connected and the 
extended function is of class Hp on R. 
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