A THEOREM OF STOUT

BY MYRON GOLDSTEIN¹ AND T. R. CHOW²

Communicated by Frederick Gehring, April 21, 1969

In a paper that appeared in Mathematische Annalen in 1968, E. L. Stout proved a generalization of a theorem of Rado which states that if f is continuous on the set $D = \{z: |z| < 1\}$ and holomorphic on $D-f^{-1}(0)$, then f is holomorphic on D. Stout's generalization is as follows:

THEOREM. Let E be a set of capacity zero in the complex plane, and let E_0 be a relatively closed set in D. If f is a function bounded and holomorphic in $D-E_0$, if f' does not vanish identically, and if for every sequence $\{z_n\}$ in $D-E_0$ such that $z_n \rightarrow z_0 \in E_0$ and $\lim f(z_n) = w_0$ exists it is the case that $w_0 \in E$, then f is holomorphic throughout D.

We shall generalize this theorem by replacing D by an arbitrary hyperbolic Riemann surface and replacing the assumption that f is bounded by the assumption that f belong to the Hardy class H^{P} , $0 < P \leq \infty$, i.e., that $|f|^{P}$ possesses a harmonic majorant. Thus our theorem reads as follows:

THEOREM. Let E be a set of capacity zero in the complex plane, and let E_0 be a closed subset of a hyperbolic Riemann surface R. If $f \in H^P(R-E_0)$, i.e., f is of class H^P on each component of $R-E_0$, $0 < P \leq \infty$, if f is nonconstant on some component of $R-E_0$, and if for every sequence $\{a_n\}$ in $R-E_0$ such that $a_n \rightarrow a_0 \in E_0$ and $\lim f(a_n) = b_0$ exists it is the case that $b_0 \in E$, then f is holomorphic throughout D.

REMARK. In the proof we shall use the same notation and terminology in [1] and [2].

PROOF. Let $S=R-E_0$ and let S_0 be a component of S on which f is nonconstant. It then follows that S_0 is hyperbolic and that its universal covering surface is D. Let π denote the projection map of D onto S_0 . Since π is a Fatou mapping, the fine limit function $\hat{\pi}$ is defined a.e. on ∂D . Here a.e. refers to Lebesgue measure. Since D is a regular covering surface of S_0 , it follows that every point P' in S_0 has a neighborhood V with the property that each component of $\pi^{-1}(V)$ is compact. Hence π is of Blaschke type. It follows that for a.e. point

¹ First author is partially supported by NSF Grant GP 8260.

² Second author is partially supported by NSF Grant GP 7474.

 $b \in \partial D$, $\pi(b)$ is defined and lies in the minimal Martin boundary of S_0 . Let us now regard π as a mapping of D into R. π is still a Fatou mapping and hence $\hat{\pi}$ is defined a.e. on ∂D . Consequently for a.e. $b \in \partial D$, $\hat{\pi}(b)$ is defined and either lies in Δ_1 , the minimal Martin boundary of R, or else lies in E_0 . Since $f \in H^P(S_0)$, f is a Fatou mapping and hence $f \circ \pi$ is a Fatou mapping. Hence $(f \circ \pi)^{\hat{}}$ is defined a.e. on ∂D . If the set of points $b \in \partial D$ where $\hat{\pi}(b)$ is defined and lies in E_0 , is of positive Lebesgue measure, then the set of points $f(\hat{\pi}(b)) = (f \circ \pi)^{\hat{}}(b)$ would have to be of positive capacity, since f is nonconstant, by a theorem of Doob; but on the other hand it would have to be of capacity zero since by hypothesis this set would have to be contained in E, and E has capacity zero. Hence π regarded as a mapping of D into R is of Blaschke type and hence by a theorem of Heins, E_0 is a set of capacity zero. Hence by a theorem of Parreau, f has a holomorphic extension to R.

REMARK. Actually, more is true. Thus $R - E_0$ is connected and the extended function is of class H^P on R.

References

1. L. V. Ahlfors and L. Sario, *Riemann surfaces*, Princeton Univ. Press, Princeton, N. J., 1960.

2. C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer-Verlag, Berlin, 1963.

3. J. L. Doob, Conformally invariant cluster value theory, Illinois J. Math. 5 (1961), 521-547.

4. M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier (Grenoble) 3 (1952), 103–197.

5. S. Yamashita, On some families of analytic functions on Riemann surfaces, Nagoya Math. J. 31 (1968), 57–68.

OREGON STATE UNIVERSITY, CORVALLIS, OREGON 97331