
ANALYTIC SHEAVES OF LOCAL COHOMOLOGY 

BY YUM-TONG SIU 

Communicated by Armand Borel, April 18, 1969 

Suppose $ is a coherent analytic sheaf on a complex analytic space 
X. Denote by Sk($) the analytic subvariety { x C X l c o d h S ^ f e } . For 
any open subset D of X, denote by Sk($\ D) the topological closure of 
Sk($\D) 'mX. If V is an analytic subvariety of X, denote by SC^SF) 
the sheaf defined by the presheaf U*->Hy(U9 $), where Hy(U, $) is 
the ^-dimensional cohomology group of U with coefficients in ^ and 
supports in V. If cf>:X—»F is a holomorphic map, denote by <j>k($) 
the &th direct image of ^ under <f>. If X, $, and V are complex alge
braic instead of analytic, 30!y(5) has the same meaning and $FA denotes 
the coherent analytic sheaf canonically associated with 9r. 

Our results are as follows: 

THEOREM A. Suppose V is an analytic subvariety of a complex ana
lytic space (X, 30,), q is a nonnegative integer, and $ is a coherent analytic 
sheaf on X. Let d: X— V—>X be the inclusion map. Then the following 
three statements are equivalent: 

(i) OQ($\X-V), • • • , 8q($\X-V) (or equivalently 3^(30, • • • , 
5CQv'1(^)) are coherent on X. 

(ii) For every x£V, 0*(p\X—V)x, • • • , 0q(5\X-V)x (or equiva
lently 3Cy(9%i - • • » 3C7+1(3%) are finitely generated over 3CX. 

(iii) dim VrMSk+q+1($\X- V)<k for every k^0. 

THEOREM B. Suppose V is an algebraic subvariety of a complex 
algebraic space X,qis a nonnegative integer, and & is a coherent algebraic 
sheaf on X. Then 3Cy($), • • • , JC^"1^) are coherent algebraic sheaves 
on X if and only if 3 $ (5*), • • • , SCp'1^) are coherent analytic sheaves 
on X. If so, the canonical homomorphisms ^dy(^)h—>3£y(5h) are isomor
phisms for O^k^q+1. 

In the theory of extending coherent analytic sheaves, the main 
problem is to answer the following question: Suppose $ is a coherent 
analytic sheaf o n Z - F , where V is an analytic subvariety of a com
plex analytic space X. Let 6: X— V—>X be the inclusion map. When 
is 6o($) coherent? This question has been answered in various ways 
in [ l ] through [lO]. Theorem A gives a criterion for the coherence 
of 0q($) after a coherent analytic extension has been found. This 
criterion given in Theorem A sharpens a result of Trautmann [ l l ] . 
Theorem B answers in the affirmative a question raised by Serre 
[2, pp. 373-374]. 
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The proofs consist of refining the techniques in [ l l ] and skillfully 
making use of results concerning gap-sheaves and homological co-
dimensions and zero-divisors of stalks of coherent sheaves. There is 
an algebraic analog of the same formulation for Theorem A. Details 
will appear elsewhere. 

ADDED IN PROOF. In a paper to be published, Trautmann inde
pendently has also obtained the equivalence of (i) and (iii) of 
Theorem A. 
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