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1. Introduction. This note describes limiting and oscillatory fea
tures of some nonlinear functional-differential systems having appli
cations in learning and nonstationary prediction theory. The main 
results discuss systems of the form 

(1) ±i(t) = A(Wt, t)xi(t) + £ Bk(Wt, t)zki(t) + d(t) 
keJ 

and 

(2) *y<(0 = Dj(Wh t)Zji(t) + Ej(Wh t)xi{t), 

where i £ 7 , j G J, and J and / are finite sets of indices such that either 
ƒ = J or ir\J = 0. The coefficients are continuous functions of t, 
dependent perhaps on the 11\ (1 +1 J\ ) dimensional vector function 
W=(xitZji: i £ I , jÇzJ) evaluated at times no later than t, and on 
known functions of /. All coefficients Bj and Ej are also nonnegative, 
and the initial data and inputs C»- are nonnegative and continuous. 
The main results discuss the probabilities yji(t) =Zji(t) [ J3jberZj*(0]""x 

and Xi(t) =Xi(t) [ 2 * € / ^ ( 0 ] - 1 defined îoriÇil a n d ; £ / , given choices 
of initial data and coefficient functionals for which (1) and (2) has a 
unique bounded solution. 

These results apply for example to systems of the form 
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(3) 

Xi(t) = - OiiXi(t) + ]T) \Xk(t - Tki) - Tki] puZki (/) 
J f e - 1 

n + (—) 
~ 2 [*k(t ~ **<) — I'M] ÇkiZki (Ô + /<(*)» 

* - l 

(+) (+) (+) (+) r _<+)_ _(+) 
(4) Zji (t) = - Uji Zji (0 + */« [*y(* ~ T/<) - TyJ [*<(/)] , 

and 
(-) <-) (-) (-) + + 

(5) èji (/) = - Uji Zji (t) + Vji [Xj(t - Tji) - r^J [-Xi(t)\ , 

i,j = l, 2, • • • , n, where [w]+ = ma.x(w, 0) for any real number w\ or 
alternatively to (3) along with 

(6) Zjî\t) = { - u ? £ \ t ) + v<?[xi(t)]+} [xj(t -Tji) - r „ ] + 

and 

(7) *"(0 = {-u?z£\t) + v^[-Xi(t)]
+] fait - r,d - r„]+. 

Such systems and generalizations thereof, known generically as 
embedding fields, describe cross-correlated flows on signed networks 
which are capable of learning and predicting complicated tasks. They 
are discussed in special cases along with references to pertinent psy
chological, neurophysiological, anatomical, and biochemical data in 
[l]-[8]. 

2. Main results. The limiting and oscillatory behavior of the 
probabilities yji(t) and X{(f) associated with (1) and (2) is quite in
sensitive to the detailed form of functional coefficients if C*(/) repre
sents a spatial pattern; i.e., if Ci(t)=0iC(t) with ]C*ei0» = l and 0 , ^ 0 . 

THEOREM 1. Let (1) and (2) be given with continuous and nonnega-
tive initial data and inputs, and coefficient junctionals continuous in t 
such that 

(1) all Bj and Ej are nonnegative, 
(2) JoBj(Wvt v)dv = oo only if f?Ej(W„ v)dv=«>, 
(3) JoC(v)dv =oo, 
(4) there exist positive constants K\ and K2 such that for every T è 0, 

C(v) exp A (Wh Qdi \dv è Kx if t è K2, 

(5) the solution of (1) and (2) is bounded. 
Then all the limits Py» = lim^00yy»(/) and Qi = lim^00-X'»(/) exist and 
Qi~0i- If moreover 
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(9) Ej(W9,v)dv- oo, 
J o 

then Pji=0i, whereas if Ej(Wt, t) = 0, then ya(t) = 0. 

Speaking heuristically, Theorem 1 says that the probabilities ya(t) 
and Xi(t) learn the weights 0» if they practice them sufficiently often. 

Oscillations are described in terms of the functions 

Yi(t) = mdx{yji(t):j E / } , y<(0 = m i n { ^ ( 0 : i G ƒ } , 

Mi(t) = max{ Yi(t), Xi(t)}, tm(t) = min {?<(*), X<(0}, 

FM(/) = max{ F<(*), »<}, ?<.•(*) = min{y<(*), 0<}, 

Mit9(t) = max{ F M ( 0 , *<(*)}, and mitd(t) = min{y*.,(fl, X,(0}. 

PROPOSITION 1. Let the conditions of Theorem 1 hold, and suppose 
also for convenience that ^>2iei%i(0)>Q and ]C*erSy»(0) > 0 if Ej^O. 
Then for every time T*zQ and all t ̂  Tf 

mite(T) g tm,e(t) g Jf ,,,(*) S Mit6(T). 

If moreover I(t) =0for t^T, then 

nn{T) g nuit) g M ft) g Mi(T). 

The f unctions Yite, yite, Xi—Yi,$, and Xi—yi,$ change sign at most 
once, and not at all if yi,e(0) ^X»(0) ^ Yi,e(0). If moreover I(t) = 0 for 
t^T, then the functions F», yt-, -X"»— Ft-, and Xi—yi change sign at 
most once f or t^T, and not at all if y%(T) ^Xi(T) ^ Yi(T). Also sign 

Speaking heuristically, Proposition 1 says that the probabilities 
yji{t) and Xi(t) remember the weights 0* if the inputs d(t) cease after 
a sufficient amount of practice. This does not mean that the weights 
can always thereafter be reproduced in large outputs #»(/), since in a 
system of type (3)-(5), the absolute size of zji(t) decays exponentially 
after practice ceases. In (3), (6), and (7), the absolute and relative 
sizes of Zji(t) can be perfectly remembered after practice ceases in the 
absence of recall trials. 

Conditions which guarantee boundedness of (1) and (2) in cases of 
applied interest, as well as the following heuristic remarks, will be 
discussed in [s]. 

Suppose 7 n / = 0 , and write d(t)=0i(t)C(t) in (1), where C(t) 
= J^keiCk(t) and 0i(t) = Ci(t)C-1(t). Because &<(*)= 0 whenever 
Ej(Wt, t)=0, yji(t) "samples" only the weights 6i(t) of a given space-
time pattern at times t for which Ej(Wtf t)>0. Since the continuous 
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function 0t(/) can be arbitrarily well approximated by a sequence 
0*(&£)> & = 1, 2, • • • , with £ sufficiently small, 0»(/) can be "encoded" 
in a sequence y(A)= {̂ At-: ^ £ l \ , & = 1, 2, • • • , of probability distribu
tions which successively sample the pattern briefly every £ time 
units, in "avalanche" fashion. 

Suppose / = / = { l , 2 , • • • , # } and consider for specificity the fol
lowing system of type (3)-(5). 

n 

Xi(t) = - axi(t) + fi Z k O - r) - Tk]+zki(t) + ƒ<(*) 

and 

zji(t) = - iay<(0 + y[x3{t - r) - r,]+*<(0, 

i,7 = 1, 2, • • • , » . If #y(/) ^Ty for large /, then Pji^di in general, since 
(9) is violated, and an input pulse to x$ alone at times CS>0 cannot 
reproduce the relative weights 0* in the outputs X{. Since Qj = 0j, 
Xj(t)~0jx(t) where x= ^?=i#*. To guarantee (9), and in particular 
that x(t)>TjdJ'1 for arbitrarily large ty it suffices by (8) to let K\{\ 
—e-ar)-l>TflJ1. Thus for any 0y>O, the equation Py» = 0* can be 
guaranteed by choosing the positive intervals of the total input /(/) 
with sufficient intensity and/or duration. The bound Ki(l— e~aT)^1 

can be enlarged by iterating the equation 

(10) x(t) « - ax{t) + p £ [**(/ - r) - r j+f t (0 + 7(0 

and 

(11) iy(0 = - «*y(0 + 7 h ( / - r) - Tj]+x(t), 

where z3= X)?-isif» in intervals of length r, if 2£iis sufficiently large, 
and the gaps between successive values of Y fir1 are sufficiently small. 
In fact, asymptotic values of x(t) can depend on the "entropy" of the 
weights 0{. For example, if all Y3- = 0, then (10) and (11) asymptotically 
become 

x(t) ~ - ax(t) + 0 E oU(! - r)z(t) + I(t) 

and 

£(/) ~ - W2(/) + yX(t - r)x(/), 

suggesting that x(t) is asymptotically an increasing function of 
Q = ]Ct-i0t. Q attains its maximum if some 0» = 1, and its minimum if 
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all 0i = l/n. Then "asymptotically maximal energy transfer,w de
scribed by the mapping I(t)—>x(t) for /^>0, occurs if the input pattern 
is "maximally ordered.n 

Suppose all Xi(T)=0 and yji(T)=6i. Let a single input pulse Ik 
perturb a given Xk for t^T. Will this pulse gradually destroy the 
memory in the y a? The answer is "yes" if all thresholds I \ = 0 . The 
answer is "no" if the thresholds I\- are so large that the signals from 
Xk to each #»• create outputs Xi proportional to 0» without exceeding 
IV In this sense, signal thresholds localize the system's memory, and 
localized inputs create context effects in the system. 

The fact that learning occurs for so general a choice of coefficients 
in Theorem 1 means heuristically that the sensory transducers and 
signal generators of the system can be given by a wide choice of 
monotonically increasing functionals of peripheral inputs and state 
functions that maintain system boundedness. A particular choice of 
Bk or Ek merely determines how quickly a given pattern will be 
learned by y(k), and thereby determines an index of how important to 
y(k) the given pattern is. The introduction of thresholds in Bk and Ek 

guarantees that y(k) can preferentially sample or ignore prescribed 
input characteristics. 
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