UNIFORM ALGEBRAS ON CURVES

BY H. ALEXANDER
Communicated by Irving Glicksberg, April 28, 1969

1. Results. A recent result of H. S. Shapiro and A. L. Shields [4] states that if f and g are continuous complex valued functions on the unit interval I such that together they separate the points of I and also that f alone separates all but one pair of points, then the closed subalgebra of $C(I)$ generated by f and g is all of $C(I)$. Two generalizations are:

Theorem. Let A be a separating uniform algebra on I such that there exists anf in A which is locally 1-1, then $A=C(I)$.

Theorem. Let A be a separating uniform algebra on I generated by two functions f and g such that there is a compact totally disconnected subset E of I such that
(i) $f \mid E$ is constant, and
(ii) f separates every pair of points of I not both of which are in E. Then $A=C(I)$.

The proofs use the notion of analytic structure in a maximal ideal space. J. Wermer first obtained results along these lines and further contributions were made by E. Bishop and H. Royden and then by G. Stolzenberg [5] who proved

Stolzenberg's theorem. Let $X \subseteq C^{n}$ be a polynomially convex set. Let $K \subseteq C^{n}$ be a finite union of \mathbb{C}^{1}-curves. Then $(X \cup K) \wedge-X \cup K$ is a (possibly empty) pure 1-dimensional analytic subset of $\mathrm{C}^{n}-X \cup K$. (See [5] for the notation and definitions.)

A further result of Stolzenberg (and Bishop) is that a $\mathfrak{C}^{1} \operatorname{arc} K \subseteq C^{n}$ is polynomially convex and $P(K)=C(K)$. It is well known that no smoothness is needed in $\mathbf{C l}^{1}$ but that in higher dimensions further assumptions are required for the above conclusion. We have

Theorem. Let $f_{1}, f_{2}, \cdots, f_{n} \in C(I)$ separate the points of I and suppose that for $1 \leqq i \leqq n-1, f_{i}$ is either \mathfrak{C}^{1} or real-valued. Then the separating uniform algebra which $f_{1}, f_{2}, \cdots, f_{n}$ generate is $C(I)$.

If all the $f_{i}, 1 \leqq i \leqq n-1$ are real valued, this theorem reduces to a result of Rudin [3]; on the other hand, if we consider the image K of I under $t \rightarrow\left(f_{1}(t), \cdots, f_{n}(t)\right)$ we obtain a generalization of Stolzenberg's result on smooth arcs.

Applied to uniform algebras on the circle T, the methods of the previous theorems yield

Theorem. Let A be a separating uniform algebra on T which contains a function f which is locally 1-1, then either
(i) T is the maximal ideal space M_{A} of A, in which case $A=C(T)$ or
(ii) $M_{A}-T$ is nonempty and has the structure of a 1-dimensional analytic space on which the functions in A are analytic.

Finally we have the following which Shapiro and Shields [4] conjectured as an improvement of a result of Björk.

Theorem. Let $\Delta=\{z:|z|<1\}$. Let F be a closed subset of $\bar{\Delta}$ with $T \subseteq F \subseteq \bar{\Delta}$ such that
(i) F has no interior in C,
(ii) $\Delta-F$ is connected.
(iii) $(\Delta \cap F)-$ does not contain T.

Let $g \in C(F)$ and suppose that the separating uniform algebra on F generated by g and z is a proper subalgebra of $C(F)$. Then there exists $G \in C(\bar{\Delta})$ such that
(i) $G|T=g| T$,
(ii) G is analytic on $\Delta-F$.

The proofs [1] will appear elsewhere, together with more complete references to the literature. J. E. Björk [2] has independently obtained similar results.
2. A special case. In order to indicate the methods, we prove the following special case of the first mentioned theorem.

Proposition 1. Let A be a separating uniform algebra on I which contains a function f which separates all but a finite number of pairs of points of I. Then $A=C(I)$.

Proof (Sketch). It is easily seen that there are a finite number of functions in A which separate the points of I and so we may assume that A is finitely generated by $f_{1}=f, f_{2}, \cdots, f_{n}$. Let K be the homeomorphic image of I under the map $t \rightarrow\left(f_{1}(t), \cdots, f_{n}(t)\right)$. Then K is an arc in C^{n} and z_{1} (the first coordinate function) separates all but a finite number of pairs of points of K. Our goal is to prove $P(K)=C(K)$. We note that $C-z_{1}(K)$ has finitely many components and in order to give a proof by induction on this number we prove a more general result.

Proposition 2. Let K be a finite disjoint union of arcs in \mathbf{C}^{n}. Suppose z_{1} separates all but a finite number of pairs of points of K. Then $P(K)=C(K)$ and (hence) K is polynomially convex.

Proof. Let $L=z_{1}(K) . C^{1}-L$ has finitely many components. The proof will be by induction on this number k.
$k=1: L$ does not separate the plane and L has no interior and so $P(L)=C(L)$. It follows that $z \rightarrow \bar{z}$ is in $P(L)$ and so $\bar{z} \circ z_{1}=\bar{z}_{1} \in P(K)$. It is easily seen from the Stone-Weierstrass theorem that $P(K)$ contains every $f \in C(K)$ which identifies the points that z_{1} does. From this it follows that $P(K)=C(K)$.

Next we assume the result for $k-1$ and prove it for $k>1$. Assume, for the moment, that K has been proved to be polynomically convex. Then $L=z_{1}(K)$ is the spectrum of z_{1} as an element of $P(K)$. As $R(L)=C(L)$ it follows from the Gelfand theory that $F \circ z_{1} \in P(K)$ for all $F \in C(L)$. In particular, $\bar{z}_{1} \in P(K)$ and, as above, $P(K)=C(K)$.

It remains to show K is polynomially convex. Suppose not. Let Ω be a bounded component of $C^{1}-L$ such that there is an $\operatorname{arc} \gamma \subseteq \partial \Omega$ which is also in the boundary of Ω_{∞}, the unbounded component of $C^{1}-L$. Let γ° denote γ with its endpoints deleted. We may assume z_{1} is 1-1 on $z_{1}^{-1}(\gamma) \cap K$. Since γ is in the boundary of $\Omega_{\infty}, z_{1}^{-1}(\gamma) \cap K$ $=z_{1}^{-1}(\gamma) \cap \hat{K}$ by [5]. Let $K_{1}=K-z_{1}^{-1}\left(\gamma^{0}\right)$. Then K_{1} satisfies the hypotheses of our proposition for the case $k-1$. So by the induction hypothesis, $P\left(K_{1}\right)=C\left(K_{1}\right)$ and K_{1} is polynomially convex. We claim that $z_{1}(\hat{K}) \cap \Omega \neq \varnothing$. In fact if $p \in \hat{K}-K$, as K_{1} is polynomially convex, there is a polynomial f such that $f(p)=1>\|f\|_{k_{1}}$. Let T be the component of $\{q \in \hat{K}:|f(q)| \geqq 1\}$ which contains p. Then by the local maximum modulus principle, T meets K; hence T meets $z_{1}^{-1}\left(\gamma^{0}\right) \cap K$. Hence $z_{1}(T)$ meets γ and so clearly $z_{1}(T)$ meets Ω.

Now by considering closed Jordan domains whose interiors are contained in Ω, whose boundaries contain γ and which meet $\Omega \cap z_{1}(\hat{K})$, it follows by [5] that $z_{1}^{-1}(\Omega) \cap \hat{K}$ is a 1-dimensional complex manifold in $z_{1}^{-1}(\Omega)$ which is mapped by z_{1} biholomorphically onto Ω.

Let α be a straight line segment in Ω. Let γ_{1} and γ_{2} be arcs in $\Omega \cup\{$ endpoints of $\gamma\}$ which join the endpoints of α to those of γ such that $\alpha \cup \gamma \cup \gamma_{1} \cup \gamma_{2}$ is a Jordan curve bounding an open Jordan domain $W \subseteq \Omega$. Let $J=z_{1}^{-1}(\alpha) \cap \hat{K} . J$ is a real analytic arc in C^{n}. Let $X=\left(K-z_{1}^{-1}(\gamma)\right) \cup\left(z_{1}^{-1}\left(\gamma_{1} \cup \gamma_{2}\right) \cap \hat{K}\right)$. Then X is polynomially convex as it is a union of arcs such that $C^{1}-z_{1}(X)$ has $k-1$ components. By Stolzenberg's theorem $(X \cup J)^{\wedge}-X \cup J$ is a 1-dimensional analytic subset of $C^{n}-X \cup J$. But by the local maximum modulus principle $(X \cup J)^{\wedge}=\hat{K}-z_{1}^{-1}\left(W \cup \gamma^{\circ}\right)$. It follows that $\hat{K}-K$ is a 1-dimensional analytic subset of $C^{n}-K$. If $\lambda \in \Omega \cap z_{1}(\hat{K})$, then $z_{1}-\lambda$ is an analytic function on \hat{K} which has a zero on \hat{K} and has a logarithm on K; this contradicts the argument principle [5]. We conclude that $\hat{K}=K . \quad$ Q.E.D.

References

1. H. Alexander, Polynomial approximation and analytic structure (to appear)
2. J. E. Björk, On analytic structures in the maximal ideal space of a function algebra (to appear).
3. W. Rudin, Subalgebras of spaces of continuous functions, Proc. Amer. Math. Soc. 7 (1956), 825-830.
4. H. S. Shapiro and A. L. Shields, A sufficient condition for polynomial approximation on an arc in C^{2}, preprint.
5. G. Stolzenberg, Uniform approximation on smooth curves, Acta. Math. 115 (1966), 185-198.

University of Michigan, Ann Arbor, Michigan 48104

