UNIFORM ALGEBRAS ON CURVES

BY H. ALEXANDER

Communicated by Irving Glicksberg, April 28, 1969

1. Results. A recent result of H. S. Shapiro and A. L. Shields [4] states that if f and g are continuous complex valued functions on the unit interval I such that together they separate the points of I and also that f alone separates all but one pair of points, then the closed subalgebra of C(I) generated by f and g is all of C(I). Two generalizations are:

THEOREM. Let A be a separating uniform algebra on I such that there exists an f in A which is locally 1-1, then A = C(I).

THEOREM. Let A be a separating uniform algebra on I generated by two functions f and g such that there is a compact totally disconnected subset E of I such that

(i) $f \mid E$ is constant, and

(ii) f separates every pair of points of I not both of which are in E. Then A = C(I).

The proofs use the notion of analytic structure in a maximal ideal space. J. Wermer first obtained results along these lines and further contributions were made by E. Bishop and H. Royden and then by G. Stolzenberg [5] who proved

STOLZENBERG'S THEOREM. Let $X \subseteq \mathbb{C}^n$ be a polynomially convex set. Let $K \subseteq \mathbb{C}^n$ be a finite union of \mathbb{C}^1 -curves. Then $(X \cup K)^{-} X \cup K$ is a (possibly empty) pure 1-dimensional analytic subset of $\mathbb{C}^n - X \cup K$. (See [5] for the notation and definitions.)

A further result of Stolzenberg (and Bishop) is that a \mathcal{C}^1 arc $K \subseteq \mathbb{C}^n$ is polynomially convex and P(K) = C(K). It is well known that no smoothness is needed in \mathbb{C}^1 but that in higher dimensions further assumptions are required for the above conclusion. We have

THEOREM. Let $f_1, f_2, \dots, f_n \in C(I)$ separate the points of I and suppose that for $1 \leq i \leq n-1$, f_i is either \mathbb{C}^1 or real-valued. Then the separating uniform algebra which f_1, f_2, \dots, f_n generate is C(I).

If all the f_i , $1 \le i \le n-1$ are real valued, this theorem reduces to a result of Rudin [3]; on the other hand, if we consider the image K of I under $t \rightarrow (f_1(t), \cdots, f_n(t))$ we obtain a generalization of Stolzenberg's result on smooth arcs.

Applied to uniform algebras on the circle T, the methods of the previous theorems yield

THEOREM. Let A be a separating uniform algebra on T which contains a function f which is locally 1-1, then either

(i) T is the maximal ideal space M_A of A, in which case A = C(T) or

(ii) $M_A - T$ is nonempty and has the structure of a 1-dimensional analytic space on which the functions in A are analytic.

Finally we have the following which Shapiro and Shields [4] conjectured as an improvement of a result of Björk.

THEOREM. Let $\Delta = \{z: |z| < 1\}$. Let F be a closed subset of $\overline{\Delta}$ with $T \subseteq F \subseteq \overline{\Delta}$ such that

(i) F has no interior in C,

(ii) $\Delta - F$ is connected.

(iii) $(\Delta \cap F)^-$ does not contain T.

Let $g \in C(F)$ and suppose that the separating uniform algebra on F generated by g and z is a proper subalgebra of C(F). Then there exists $G \in C(\overline{\Delta})$ such that

(i) $G \mid T = g \mid T$,

(ii) G is analytic on $\Delta - F$.

The proofs [1] will appear elsewhere, together with more complete references to the literature. J. E. Björk [2] has independently obtained similar results.

2. A special case. In order to indicate the methods, we prove the following special case of the first mentioned theorem.

PROPOSITION 1. Let A be a separating uniform algebra on I which contains a function f which separates all but a finite number of pairs of points of I. Then A = C(I).

PROOF (SKETCH). It is easily seen that there are a finite number of functions in A which separate the points of I and so we may assume that A is finitely generated by $f_1=f, f_2, \dots, f_n$. Let K be the homeomorphic image of I under the map $t \rightarrow (f_1(t), \dots, f_n(t))$. Then K is an arc in \mathbb{C}^n and z_1 (the first coordinate function) separates all but a finite number of pairs of points of K. Our goal is to prove P(K) = C(K). We note that $\mathbb{C}-z_1(K)$ has finitely many components and in order to give a proof by induction on this number we prove a more general result.

PROPOSITION 2. Let K be a finite disjoint union of arcs in \mathbb{C}^n . Suppose z_1 separates all but a finite number of pairs of points of K. Then P(K) = C(K) and (hence) K is polynomially convex.

1270

PROOF. Let $L = z_1(K)$. $C^1 - L$ has finitely many components. The proof will be by induction on this number k.

k=1: L does not separate the plane and L has no interior and so P(L) = C(L). It follows that $z \rightarrow \overline{z}$ is in P(L) and so $\overline{z} \circ z_1 = \overline{z}_1 \in P(K)$. It is easily seen from the Stone-Weierstrass theorem that P(K) contains every $f \in C(K)$ which identifies the points that z_1 does. From this it follows that P(K) = C(K).

Next we assume the result for k-1 and prove it for k>1. Assume, for the moment, that K has been proved to be polynomically convex. Then $L=z_1(K)$ is the spectrum of z_1 as an element of P(K). As R(L) = C(L) it follows from the Gelfand theory that $F \circ z_1 \in P(K)$ for all $F \in C(L)$. In particular, $\overline{z_1} \in P(K)$ and, as above, P(K) = C(K).

It remains to show K is polynomially convex. Suppose not. Let Ω be a bounded component of C^1-L such that there is an arc $\gamma \subseteq \partial \Omega$ which is also in the boundary of Ω_{∞} , the unbounded component of C^1-L . Let γ° denote γ with its endpoints deleted. We may assume z_1 is 1-1 on $z_1^{-1}(\gamma) \cap K$. Since γ is in the boundary of Ω_{∞} , $z_1^{-1}(\gamma) \cap K$ $= z_1^{-1}(\gamma) \cap \hat{K}$ by [5]. Let $K_1 = K - z_1^{-1}(\gamma^{\circ})$. Then K_1 satisfies the hypotheses of our proposition for the case k-1. So by the induction hypothesis, $P(K_1) = C(K_1)$ and K_1 is polynomially convex. We claim that $z_1(\hat{K}) \cap \Omega \neq \emptyset$. In fact if $p \in \hat{K} - K$, as K_1 is polynomially convex, there is a polynomial f such that $f(p) = 1 > ||f||_{K_1}$. Let T be the component of $\{q \in \hat{K} : |f(q)| \ge 1\}$ which contains p. Then by the local maximum modulus principle, T meets K; hence T meets $z_1^{-1}(\gamma^{\circ}) \cap K$. Hence $z_1(T)$ meets γ and so clearly $z_1(T)$ meets Ω .

Now by considering closed Jordan domains whose interiors are contained in Ω , whose boundaries contain γ and which meet $\Omega \cap z_1(\vec{K})$, it follows by [5] that $z_1^{-1}(\Omega) \cap \vec{K}$ is a 1-dimensional complex manifold in $z_1^{-1}(\Omega)$ which is mapped by z_1 biholomorphically onto Ω .

Let α be a straight line segment in Ω . Let γ_1 and γ_2 be arcs in $\Omega \cup \{ \text{endpoints of } \gamma \}$ which join the endpoints of α to those of γ such that $\alpha \cup \gamma \cup \gamma_1 \cup \gamma_2$ is a Jordan curve bounding an open Jordan domain $W \subseteq \Omega$. Let $J = z_1^{-1}(\alpha) \cap \hat{K}$. J is a real analytic arc in \mathbb{C}^n . Let $X = (K - z_1^{-1}(\gamma)) \cup (z_1^{-1}(\gamma_1 \cup \gamma_2) \cap \hat{K})$. Then X is polynomially convex as it is a union of arcs such that $\mathbb{C}^1 - z_1(X)$ has k-1 components. By Stolzenberg's theorem $(X \cup J) \ -X \cup J$ is a 1-dimensional analytic subset of $\mathbb{C}^n - X \cup J$. But by the local maximum modulus principle $(X \cup J) \ = \hat{K} - z_1^{-1}(W \cup \gamma^\circ)$. It follows that $\hat{K} - K$ is a 1-dimensional analytic subset of $\mathbb{C}^n - K$. If $\lambda \in \Omega \cap z_1(\hat{K})$, then $z_1 - \lambda$ is an analytic function on \hat{K} which has a zero on \hat{K} and has a logarithm on K; this contradicts the argument principle [5]. We conclude that $\hat{K} = K$. Q.E.D.

H. ALEXANDER

References

1. H. Alexander, Polynomial approximation and analytic structure (to appear)

2. J. E. Björk, On analytic structures in the maximal ideal space of a function algebra (to appear).

3. W. Rudin, Subalgebras of spaces of continuous functions, Proc. Amer. Math. Soc. 7 (1956), 825–830.

4. H. S. Shapiro and A. L. Shields, A sufficient condition for polynomial approximation on an arc in C^2 , preprint.

5. G. Stolzenberg, Uniform approximation on smooth curves, Acta. Math. 115 (1966), 185-198.

UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104