A NOTE ON THE NUMBER OF INTEGRAL IDEALS OF BOUNDED NORM IN A QUADRATIC NUMBER FIELD

BY BRUCE C. BERNDT

Communicated by Paul Bateman, June 25, 1969
Let K be an algebraic number field of degree 2 and $F(n)$ the number of nonzero integral ideals of norm n in K. Define $P(x)$ by

$$
\sum_{n \leq x} F(n)=\lambda h x+P(x)
$$

where h denotes the class number of K and

$$
\lambda=2^{r_{1}+r_{2}} \pi^{r_{2}} R /(w \sqrt{|\Delta|}),
$$

where r_{1} is the number of real conjugates, $2 r_{2}$ the number of imaginary conjugates, R the regulator, w the number of roots of unity, and Δ the discriminant of K. It is known that [8, Satz 210] $P(x)=O\left(x^{1 / 3}\right)$. On the other hand, Landau [9] also showed that

$$
P(x)=\Omega_{ \pm}\left(x^{1 / 4}\right)
$$

Improvements were made by Szegö and Walfisz [10] and Chandrasekharan and Narasimhan [2], [3]. The former authors showed that if K is imaginary,

$$
P(x)=\Omega_{-}\left(\{x \log x\}^{1 / 4}\right),
$$

and if K is real

$$
P(x)=\Omega_{+}\left(\{x \log x\}^{1 / 4}\right)
$$

The latter showed that

$$
\begin{equation*}
\lim \sup _{x \rightarrow \infty} \inf P(x) / x^{1 / 4}= \pm \infty \tag{1}
\end{equation*}
$$

In 1961 Gangadharan [5], improving a method of Ingham, made improvements on (1) for the corresponding problems on $r(n)$, the number of representations of n as the sum of two squares, and $d(n)$, the number of divisors of n. Using Gangadharan's method, we can obtain improvements on (1) for our problem. Before stating this result we must make some definitions.

Definition 1. Let $S_{x}(x \geqq 2)$ be the set of all real numbers η expressible in the form

$$
\eta=\left|\sqrt{n}+\sum_{k=1}^{N} r_{k} \sqrt{q_{k}}\right|
$$

where q_{1}, \ldots, q_{N} are the square-free integers less than or equal to x, and n and $r_{k}, k=1, \cdots, N$, are integers such that

$$
n \geqq 0 \quad\left|r_{k}\right| \leqq 1, \quad \sum_{k=1}^{N}\left|r_{k}\right|^{2} \geqq 2
$$

It follows that [5, pp. 700-701] that there is a unique $\tilde{\eta} \in S_{x}$ such that $0<\tilde{\eta}(x)<1$ and if $\eta \in S_{x}$ then $\eta \geqq \tilde{\eta}$.

Definition 2. Let $q(x)=-\log \tilde{\eta}(x)$. Define C_{q} to be the class of all functions $Q(x)$ such that for $x \geqq x_{Q}, Q(x)$ is continuous, $Q(x) / x$ increases with x, and $Q(x) \geqq q(x)$.

It follows that for $x \geqq x_{Q}^{\prime}, Q^{-1}(x)$ exists, is continuous and increasing, and tends to ∞ with x.

Theorem. If $Q(x) \in C_{q}$, then, as x tends to ∞,

$$
\begin{equation*}
P(x)=\Omega_{ \pm}\left(\left\{x Q^{-1}(\log x)\right\}^{1 / 4}\right) \tag{2}
\end{equation*}
$$

It can be shown that [5, pp. 701-703] for some constant $b>2$. $b^{x / \log x} \in C_{q}$. We have then the following

Corollary. As x tends to ∞,

$$
P(x)=\Omega_{ \pm}\left(\{x(\log \log x)(\log \log \log x)\}^{1 / 4}\right)
$$

The proof of (2) depends upon two identities. Let $\operatorname{Re} s>0$. If K is imaginary and $B=2 \pi / \sqrt{|\Delta|}$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} F(n) e^{-s \sqrt{n}}=\frac{2 \lambda h}{s^{2}}-\frac{\lambda h}{B}+2 B s \sum_{n=1}^{\infty} \frac{F(n)}{\left(s^{2}+4 B^{2} n\right)^{3 / 2}} \tag{3}
\end{equation*}
$$

If K is real and $B=\pi / \sqrt{|\Delta|}$,

$$
\begin{align*}
& \sum_{n=1}^{\infty} F(n) e^{-\Delta \sqrt{n}} \tag{4}\\
&=\frac{2 \lambda h}{s^{2}}+\frac{1}{2 B \pi} \sum_{n=1}^{\infty} \frac{F(n)}{n} \cdot\left\{l\left(\frac{-s}{2 B \sqrt{n}}\right)\right. \\
&\left.-\frac{1}{2} l\left(\frac{-i s}{2 B \sqrt{n}}\right)-\frac{1}{2} l\left(\frac{i s}{2 B \sqrt{n}}\right)\right\}
\end{align*}
$$

where

$$
l(s)=\int_{0}^{\pi / 2} \frac{\sin \phi d \phi}{\left(1-\frac{1}{2} s \sin \phi\right)^{2}}
$$

A proof of (3) can be found in [1], although an easier proof can be given along the same lines as that of Hardy [6] for a similar identity involving $r(n)$. The proof of (4) is more complicated, but, using primarily the functional equation for the associated zeta-function, one can establish (4) by a method of Hardy [7] for a similar identity involving $d(n)$.

The proof of (2) now follows along the same lines as that in [5]. We remark that in the proof one needs the following two facts. We have $F(n)=O\left(n^{\epsilon}\right)$ for every $\epsilon>0$; this holds for any algebraic number field [4]. When K is a quadratic field, it is not difficult to show that $F\left(m^{2} n\right) \leqq F\left(m^{2}\right) F(n)$.

References

1. K. Chandrasekharan and Raghaven Narasimhan, Hecke's functional equation and arithmetical identities, Ann. of Math. (2) 74 (1961), 1-23.
2. - Hecke's functional equation and the average order of arithmetical functions, Acta Arith. 6 (1961), 487-503.
3. --, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. (2) 76 (1962), 93-136.
4. ——, The approximate functional equation for a class of zeta-functions, Math. Ann. 152 (1963), 30-64.
5. K. S. Gangadharan, Two classical lattice point problems, Proc. Cambridge Philos. Soc. 57 (1961), 699-721.
6. G. H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math. 46 (1915), 263-283.
7. -, On Dirichlet's divisor problem, Proc. London Math. Soc. (2) 15 (1916), 1-25.
8. E. Landau, Einführung in die elementare und analytische Theorie deralgebraischen Zahlen und der Ideale, Chelsea, New York, 1949.
9. - Über die Anzahl der Gitterpunkte in gewissen Bereichen, Vierte Abhandlung, Gött. Nachr. (1924), 137-150.
10. G. Szegö and A. Walfisz, Über das Piltzche Teilerproblem in algebraischen Zahlkörpern, Erste Abhandlung, Math. Z. 26 (1927), 138-156.

University of Illinois, Urbana, Illinois 61801

