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We present here two new inequalities for the space of vector-
valued functions X in Lp, p>\ with the norm | |Z | | satisfying | |x | |* 
—J\x\pdtx. The inequalities are extensions of those given by K. O. 
Friedrichs [ l ] and can be used respectively instead of Clarkson's 
inequality, [2], to give simple proofs that Lp space is uniformly con
vex (rotund) and uniformly smooth. A different proof of the uni
form convexity was given by Beurling in a lecture and for p è 2 by 
Mostow [3], For earlier results on the uniform smoothness see Day [4]. 

The two inequalities (global) are for p>lt 
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wherea = a ( £ ) > l , 5 = 1 for p<2, s=p/2 for p>2, and 

(§||x||* + §|| rH 
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(lb) l1 + HpTrP +h{üxTn)) 
where bi = h(p), 5 = 2, vanishes for p^2 and fa^faip). Note by 
convexity since p > 1, 

a) 
X+ Y 

^§(||x|MM|)g(§||x||* + §||F||*)»'* 

= max( | |z | | , | |F | | ) . 

We set X+Y=2A, X-Y=2D and introduce r = ||Z?||/||,4|| and 
w = (§ | |x | | J '+§ | | Fll»)1'". Then one notes that the two inequalities 
may be used to confine the ratio ||.<4||/m in the form 

(1 + hr* + b**)"' = \\A\\/m £ (1 - (cr\\A\\/my"yi> 

where c = c(p)<l. 

1 This paper represents results obtained at the Courant Institute of Mathematical 
Sciences, New York University, with the United States Army Research Office, Con
tract No. DA-31-124-ARO-D-365. 
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In general, consider a Banach space (B with elements X and norm 
||X|| and the same definitions as before. Let M = max (| |x| | , || F| |). 

DEFINITION I. (B is uniformly convex if, for each e>0 , 38 > 0 such 
that each pair X, F£(B which satisfies || ^4|| ^ ( 1 —ô)M also satisfies 
\\D\\^eM. 

DEFINITION II . (B is uniformly smooth if, for each cr>0, 3 r > 0 
such that each pair X, F£(B which satisfies \\D ^ r \ \ A \ \ also satisfies 
||X||+||F||g2|M||+,||Z)||. 

THEOREM. For l<p< °o, Lp-space is (a) uniformly convex and (b) 
uniformly smooth. 

We first prove the theorem using the global inequalities and then 
prove the global inequalities (I) through local inequalities (II). 

PROOF OF THEOREM, (a) We may take e<l since by the triangle 
inequality ||Z>||<ikf. By use of the inequalities m<M, (1), and 
mi l è (1 —5)Âf, we see that (la) implies that 

1 - 8 g (1 - (am-1||l>||)*'«)1/p 

or 

a(m-l\\D\\yi'<:l-(l-è)*> = 1 - (1 - (o€)*'«) = (ae)p'« 

for 3 = l - ( l ~ ( a € ) ^ ) 1 ^ from which ||Z>|| ^em^eM. 
(b) By inequality (lb) and the fact that for p>l, (l + \%\)llp 

f f i g | m | ( l + (l/^)(6ir* +J 2 f*)) . 

T h u s i f | | P | | ^ r | M | | , 

m ^ mU + (1/pKhr + hrP~l)\\D\\ = m | | + (er/2)||Z>|| 

if we choose T(<T) as the positive solution of <r = (2/p)(biT-\-b2Tp~l). 
Thus by (1), ||X||+J|F||^2|M||+ff||Z)||. 

The proof of (la) is based on a local inequality for vectors X, Y: 

(Ha) | D\p Sa(\x\p+ | F | * 0 1 - * ( | X | * + | Y\* - 2 | 4 |*)« 

with a>a(p), 5 = 1 for £ > 2 , 5 = £/2 for p<2. 
Using the Holder inequality after integrating with respect to the 

measure n we find since 0 < g ^ l , 

N I * è a(\\x\\p + ||F||*)*-'(|I*1I* + II ill* - 2|M||")'. 
Taking 5th roots and rearranging we find (la) with a =a1/*. 

PROOF OF THE LOCAL INEQUALITY (Ha). Clearly it suffices, by 
homogeneity, to prove ( l ia) for vectors x, y satisfying \x\ = 1 , 
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\y\ ^ 1 . Let a = %(x+y), d = %(x—y). Then l + |;y|p — l\a\v vanishes 
only for d = 0 since 

N<èH + il^(L±-lzi:y/p 

by convexity if d5*0. Hence, 3/3>0 such that for all y, \y\ ^ 1 , 

(2) 1 + | ;y |*>-2 |a |*>>/? |<Z| 2 

if there exists a neighborhood 91 of x where such an inequality holds. 
We expand in the neighborhood of x, \x\ = 1 , by Taylor's series 
using y=x-~2d, \y\ 2 = l-4d-x+4\d\2. Thus \y\*> = l-2pd'X 
+2p\d\2+2p(p-2)(d-x)2 + 0(\d\s). From \a\ *> = (\x-d\2)*'2 we 
have 

i P i . P(P - 2) 
I a | ' = 1 - pd-x + — \d\* + — (J-x)2 + 0 ( | J |3) 

and thus 

1 + \y\p-2\a\* = p\ d\*(l + (p - 2)(d-x/ \ d\)*) + 0(\ d\*) 

for \d\ small enough;/3 = 2 (p - l ) /p for p < 2 , j3 = 2/£ for £ è 2 . 
We apply (2) with x = X / | X | , | X | F^O, ^ = F / | Z | . After multi

plying by | X | p we obtain 

(3) | X|*> + | F |*>- 2 | i l | * à i 8 | * K 2 | D\\ 

For £ ^ 2 we note that | l > | * ^ 1£>| 2 | ^ | *>~2 since | X | è | F | . Thus 

| D \* ^ ^ | X \* + I F \* - 2 | il \P) 

so that the inequality (Ha) holds with a>j8~1, 5 = 1. 
For p<2, we take the p/2 root of the inequality (3) obtaining 

| D \P ^ 0-*/* | X |*(*-P)/»( I x \* + | F |* - 2 | A \*>)P'2 

and the inequality (Ha) holds with a=/3~*, s = p/2. 
PROOF OF THE GLOBAL INEQUALITY (lb). This is again proved by 

using a local inequality 

(lib) i(\x\p+ | F|*>) g \A\^ + b1\ A\*-*\ D\* + b2\ D\* 

where bi = bi(p) vanishes for p^2, bi~bi{p). 
Using Holder's inequality we obtain 

file:///y/p-2/a/*
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*<ll*ll' + II ill') ^ IUII' + *JMIMW + * M ' 
since bi = 0 for p^*2. 

PROOF OF LOCAL INEQUALITY ( l ib) . Consider the vectors xf y with 
a=(%(x+y),d = %(x —y) and which satisfy) a\ = 1. T h e n | x | p = | a + d | * 
= ( l + 2 a - d + | d | 2 ) * ^ Clearly for \d\<dx say, \x\* = l+pa-d 
+0(\d\2)^l+pa-d+bi\d\u where 5 is 1 for p>2, and p/2 for 
p<2 and bi = bi(du p). But for \d\ >di 

\x\P<(\dM+2\d\2/d1+\d\Y2<bt\d\P. 

Combining these two inequalities for some fixed d\ we can find 
bi — bi(p)t bi = b2(p) such that 

\x\» ^ 1 + pa-d + J i | d\2 + b%\ d\* 

where bi = 0 for p<2. 
Similarly 

\y\* = | a — d?ĵ  = 1 — pa*d + b%\ d\2 + b2\ d\p. 

Adding we find 

(4) %\ x\» + %\ y\» £ 1 + h\ d\* + b2\ d\* 

for | x + ^ | = 1 , bi — 0 for p<2. Assuming \A\ ?*Q we apply (4) to 
x = X/\A\, y=Y/\A\ and multiply by \A\*. Thus 

| ( | * | p + | Y\P) ^ \A\* + bi\A\*-*\D\* + b»\D\p. 

If A=0, X=-Y, and J ( | * | * + | F|*) = 2*- 1 | l ) |»so that the local 
inequality holds by modifying ôj. 
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