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Introduction. Given a metric space (5, d), and a Banach space JE, 
let Lip#(S, d) denote the vector space of bounded functions ƒ : S-+E 
such that 

l l / l l - - 8 u p { | | / W - / ( 0 | | d - 1 ( * , 0 | ^ < } 

is finite. Let | | - |L denote the sup-norm. Then Lip#(S, d) endowed 
with || ' | | =max( | | -W^, \\ -\\d) is a Banach space. lip^(5, d) denotes the 
closed subspace of functions ƒ such that 

lim | | / (* ) - / (0 | | i l - l (* ,0 = 0. 
aha) -K> 

When E is the set of real or complex numbers, we drop the subscript 
and write Lip(5, d) and lip(*S, d). 

In this paper we examine the Banach space properties of lip(5, d) 
and Lip (5, d) and extend some known results. Details and proofs of 
results presented here will appear elsewhere. 

The author wishes to express his thanks to Professor D. R. Sher-
bert for his advice in preparing this paper. 

1. Weak completeness and extreme points. 

THEOREM 1.1. Let (5, d) be any metric space. A sequence {ƒ»} in 
lip (5, d) is weakly Cauchy if and only if it is bounded and every se-
quence {sm} in S has a subsequence {sm.} such that l ining lim*-* fn(smi) 
exists. 

COROLLARY 1.2. If (5, d) is compact, {fn} is weakly Cauchy if and 
only if it is bounded and lim».*» fn(s) exists for each s G S. 

If 0 < a ^ l and d is a metric, so is d". We frequently consider 
lip(5, da) for 0 < a < l , since this space separates points. 

THEOREM 1.3. Let (5, d) be any metric space and 0 < a < l . Then 
neither Lip(5, da) nor lip(5, da) is weakly sequentially complete unless 
S is a finite set. 

1 This paper is a portion of the author's doctoral dissertation submitted to the 
University of Illinois. 

* This research was supported in part by the National Science Foundation. 
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The proof of 1.3 consists in using 1.1 to show that if lip (5, d") is 
weakly sequentially complete, it is isomorphic with the space of 
bounded functions on S. 

In [6] Jenkins characterized the extreme points of the dual ball of 
lip(5, da) when 0 < a < l and (5, d) is compact. This generalized a re
sult of deLeeuw [3]. He also gave a partial description of the extreme 
points of the dual ball of Lip (5, d"). We state this latter result below 
for reference. 

If /GLip(5 , d°) and W={(s, t)ESXS\s9*t], define f(s, *) = 
(f(s)-f(t))/d"(s> 0 if (*. DEW and ƒ « = ƒ ( * ) if sES. Then f EC 
(SKJW), the bounded continuous functions on S^JW. Let S be com
pact. We can extend each ƒ to an element ƒ in C(SUfiW), where f3W 
is the Stone-Cech compactification of W. ƒ—>ƒ is a linear isometry. 
The result of Jenkins states that the extreme points of the dual ball 
are precisely the functionals of the form ƒ—>\f(s) and ƒ—>\f(s, t), for 
sES, 0<d(st t)<2 and | \ | = 1 , plus some subset Q of functionals of 
the form ƒ—»X/(o>) where CJEPW^W, |X| = 1 . The nature of Q was 
left an open problem in [ó]. Using 1.3 and Rainwater's theorem 
(see [7]), we get 

THEOREM 1.4. Q^0 unless S is a finite set. 

2. Compactness. 

LEMMA 2.1. Let (5, d) be any metric space and F a bounded subset of 
Lip(5, d). Then P— {J\fEF} is equicontinuous at each point of S\JW. 

THEOREM 2.2. Let (5, d) be compact. A subset F of lip(5, d) is rela
tively compact if and only if 

lim dr^s, t) \ f(s) - ƒ(/) | = 0 uniformly for f E F. 
<I(* ff)->0 

COROLLARY 2.3. The unit ball of Lip(5, dfi) is compact in lip(5, da) 
forQ<a<P£l. 

THEOREM 2.4. The following are equivalent: 
(a) (5, d) is precompact. 
(b) The unit ball of Lip (5, d°), 0 <a ^ 1, is compact for the sup-norm 

topology. 
(c) The unit ball of Lip(5, dfi) is compact in lip (5, da) for 0 < a < & ^ 1. 

REMARK. A characterization of the weakly relatively compact sub
sets of lip(5, d) similar to 2.2 but involving quasi-equicontinuity can 
be given. 
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3. Lipi?/(S, d) as a dual space and Lip(S, da) as a second dual. 
Several results have appeared which recognize various spaces of 
Lipschitz functions as dual spaces (see [ l ] and [8]). By using a 
theorem due to Dixmier [4], we obtain the following result. 

THEOREM 3.1. For any metric space (5, d) and any Banach space Et 

LipE (S, d) is a dual space whenever E is. 

Considering Lip (5, d) and Lip^(5, d) as dual spaces, we can char
acterize weak* sequential convergence. 

THEOREM 3.2. A sequence {fn\ in Lip^(S, d) converges weak* to zero 
if and only if it is bounded and {fn(s)} converges weak* to zero in E for 
each sÇzS. If (5, d) is compact, a sequence {gn\ converges weak* to zero 
in Lip (5, d) if and only if it is bounded and converges uniformly to zero. 

For the rest of this paper, unless otherwise stated, assume that 
every closed bounded subset IDÎ (5, d) is compact. Let lip°(5, da) 
denote the space of functions in lip(5, da) that vanish at infinity. 
The main result of [6] is that for real-valued functions, the bidual of 
lip°(5, da) ( 0 < a < l ) is Lip(5, da). For complex-valued functions, an 
extra hypothesis on (5, d) was required. (This generalized the original 
work of deLeeuw [3] along these lines.) By using 3.1, we are able to 
give a different proof of this result which shows the extra hypothesis 
in the complex case to be unnecessary. 

4. Lip#»(S, d) as a second dual. Given a Banach space JE, let E' 
and E" denote its dual and bidual respectively. Since Lip^"(5, da) 
is a dual space, it is natural to ask if it is the bidual of lip^(5, d"), 
0 < a < l . (f:S-*E is said to vanish at infinity if | / | does, where 
\f\(s)=\\f(s)\\). 

In the scalar-valued case the canonical mapping of lip°(5, da)" into 
Lip (5, da) is shown to be one-to-one by showing that the point evalu
ations span a dense subspace of lip°(5, da)f. We are able to extend 
this to the vector-valued case by defining a canonical map 
A:lip^(5, da)"-*L\pE"(S> da) in an analagous way and showing that 
functionals of the form f-+(f(s), * ' ) , s£S, x'EE', fElipE(S, d«), 
span a dense subspace of lip^(5, da)\ This is done by use of vector-
valued measures. 

At this point, the methods used in the scalar-valued case fail be
cause of an inability to extend vector-valued Lipschitz functions in a 
norm-preserving way. To bypass this, the theory of tensor products 
of Banach spaces is employed. The following result is vital for this 
purpose. 
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THEOREM 4.1. For any metric space (5, d) and Banach space E, 
Lip^'(5, d) is isometrically isomorphic with the space £(E, Lip(S, d)) 
of bounded linear maps from E into Lip (S, d). 

REMARK. When (5, d) is compact, the isometry in 4.1 identifies 
lip^/(5, d) with the compact operators having range in lip (5, d). 

Now, if V denotes the closed linear span in Lip (5, d)f of the point 
evaluations, then the tensor product E® F of E and V can be canon-
ically identified (algebraically) with a subspace of Lip^/(5, d)f by 
x®<t>(f)=4>(xof), where xof is the element of Lip(S, d) defined by 
xof(s) = (x, f(s)) for s G S. 

From 4.1 and a theorem due to Schatten [lO, Theorem 3.2, p. 47] 
we obtain the basic 

THEOREM 4.2. Let (S, d) be any metric space and E any Banach 
space. Then the norm induced on E®V as a subspace of Lip^/(5, d)' is 
the greatest crossnorm 7. 

Let X denote the so-called least crossnorm and X' the dual norm. 

THEOREM 4.3. The norms X' and y agree on E'®lip0(S, da)f if and 
only if A is a surjective isometry and E®lip°(5, da) is dense in lip# 
(S, da) (under the usual identification x®f-+f'x). 

Now, a theorem due to Grothendieck (see [5, Corollary 5.2, p. 
HO]) gives 

THEOREM 4.4. Let E be a Banach space, and 0 <a < 1. If either E' or 
lip°(5, da) has the approximation property {see [9, Chapter 10, §9]), 
then A is a surjective isometry. 

When (5, d) is the unit interval, lip(S, da)r is isomorphic with h 
(see [2]) and therefore has the approximation property. I t is not 
known whether this is true in general. 
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