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For every prime p=—l (3) we define a self-orthogonal (2p + 2, 
p + 1) code over GF (3). I t can be shown that the group leaving a 
(2p+2, p + 1) code invariant is PSL2(p). The minimum weights of the 
first five codes in the family are determined and lead to new 5-designs. 

Let /, r, and n be integers with t^r^n. A X ; / — r — n design D is a 
collection of subsets of the n integers, each subset containing r ele­
ments, such that any /-subset of the n integers is contained in the 
same number X of subsets in D. Some designs, a 1; 5 — 6 — 12, a 1; 
5 — 8 — 24, and a 48; 5 —12—24 associated with the Mathieu groups 
Mu and -M24, have been known for a long time. Recently, [ l ] and [5], 
2; 5 — 6 — 12 and 2; 5 — 8 — 24 designs have been found. Using coding 
theory [2] other 5-designs were found for w = 24 and w = 48. We have 
found new 5-designs for # = 36 and n = 60 and a number of r's. Also 
we found new 5-designs for n = 24 and n = 48 which are not equivalent 
to the ones mentioned above. Two /-designs are called equivalent if 
there is a permutation of the n integers so that the subsets of D go 
onto subsets in D. 

Let Vtp+% be a vector space over GF(3) with a fixed, orthonormal 
basis. We call a subspace of this space an error correcting code. We 
define a family of codes of dim(£ + l) (referred to as (2p + 2, p + 1) 
codes) by a basis (/, Sp) where Sp is given below. 
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code generated by (ƒ, Sp) as C(p). 
1. We refer to the 
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An important concept in coding is the weight of a vector v, this is 
the number of nonzero components it has. The linear transformations 
of interest here are the monomial transformations. The matrix of such 
a transformation has exactly one nonzero element in any row or 
column. Two codes are said to be equivalent if one is obtained from 
the other by a monomial transformation. Let G(p) be the group of 
monomial transformations leaving C(£) invariant. 

THEOREM 1. The code C(p) is self orthogonal for all p ; hence the weight 
of any vector in C(p) is divisible by 3. 

This follows from the fact that Sp is self orthogonal over the reals 
[4, pp. 209, 210]; hence over GF(3), and every basis vector is self 
orthogonal. 

THEOREM 2. The group G(p) contains a subgroup isomorphic to R 
where R modulo {/,—ƒ} is isomorphic to PSL2(£). 

THEOREM 3. For £ = 1 (4), ( — Sp, I) is also a basis of C(p). For 
£ = 3(4), (SPf I) is also a basis of C(p). 

In general if (/, Sp) is a basis of a code, ( — 5 j , i") is the basis of the 
orthogonal code, which is C(p) again since it is self orthogonal. The 
result then follows if we note that SP = SP for £ - 1 ( 4 ) [4, p. 210] and 
5 , = - S j for £ = 3(4) [4, p. 209]. 

COROLLARY. If £ = 1(4), G(p) contains a subgroup isomorphic to 
ZJR. where ZAR=RZi and RT\ZA*= {J, - l } , and if £ = - 1 ( 4 ) , G(p) 
contains a subgroup Z*XR- In both cases R is as in Theorem 2. 

We use this theorem and the following lemma in determining the 
minimum weights of the first five codes. 

LEMMA, (a) The weight of the basis vectors of (I, Sp) is £ + 1. 
(b) The weight of a linear combination of 2 basis vectors is (£ + 7)/2. 
(c) The weight of a linear combination of 3 basis vectors is*z(p + 7)/2. 
(d) No linear combination of the rows of Sp is 0. 

The proof of this lemma depends on the fact that SpSp=pIp+i over 
the reals [4, pp. 209, 210], SPSP = — Ip+i over GF (3) and hence is non-
singular over GF (3). Par t (c) follows from parts (a) and (b). 

We relate /-designs to codes as in (2). The minimum weight in a 
code, denoted by d, is the weight of the nonzero vector in the code of 
smallest weight. 

Case I. £ = S. This is a (12, 6) code. 
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By the use of Theorem 3 and the lemma it can be shown that d = 6. 
Hence this code is equivalent to the Golay code (7). I t is known that 
its minimum weight vectors hold 1 ; 5 —6 —12 designs (1) and (7). 

Case I I . p = 11. This is a (24, 12) code: 
Again Theorem 3 and the lemma show that d = 9. Hence by the 

Assmus-Mattson Theorem (2) the vectors of weights 9, 12, and 15 
hold 5-designs. They also hold 4, 3, 2, and 1 designs. There is a (24,12) 
quadratic residue code with the same d as C( l l ) , however, since 
the entire group of the quadratic residue code (2) and its associ­
ated 6; 5—9 — 24 design (3) is PSL2(23), and since C( l l ) is invariant 
under PSL2 (11) which is not contained in PSL2 (23), this implies that 
the two codes are not equivalent and the two 5-designs are not 
equivalent. 

Case I I I . Let p = 17. This is a (36, 18) code. 
By Theorem 3 and the lemma we can say that all linear combina­

tions of the basis vectors except 4 or 5 at a time have weight ^ 1 2 . 
All linear combinations taken 4 at a time were calculated on a com­
puter and found to have weight è 12. Again Theorem 3 and the lemma 
tell us that linear combinations taken 5 at a time have weight ^ 1 2 . 
Hence d = 12. 

By the Assmus-Mattson Theorem (2), the vectors of weights 12,15, 
18 and 21 hold 5-designs. These are the first 5-designs found for these 
parameters. These vectors also hold 4, 3, 2 and 1-designs. 

Case IV. Let p = 23. Here we have a (48, 24) code. 
I t was shown, in part by computer, that d = 15. Arguing as before, 

we need only determine linear combinations taken 4, 5, and 6 at a 
time by computer. Again we have (2) that the vectors of weights 15, 
18, 21, 24, and 27 hold 5-designs; also 4, 3, 2 and 1-designs. 

There is a (48, 24) quadratic residue code with the same d as C (23), 
(2), however, (2) the entire group of this quadratic residue code and 
also of its 5 — 15—48 design (3) is PSL2(47), and since C (23) is in­
variant under PSL2(23) which is not contained in PSL2(47), this im­
plies that the two codes are not equivalent and their two 5-designs are 
not equivalent. 

Case V. Let £ = 29. Here we have a (60, 30) code. 
I t was shown, in part by computer, that d = 18. 
As before it can be argued that the only linear combinations to be 

determined on a computer are those taken 4, 5, 6, and 7 at a time. 
By the Assmus-Mattson theorem again the vectors of weights 18, 

21, 24, 27, 30, and 33 hold 5-designs; also 4 and lower designs. These 
are the first 5-designs found for these parameters. 
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I t should be noted that a /—r—24 (/'—r' —48) design associated 
with C (11) (C (23)) has the sameX as the * - r - 2 4 ( * ' - r ' - 4 8 ) design 
associated with the quadratic residue (24, 12) ((48, 24)) code. This is 
due to the fact that for these codes the Mac Williams formulas have a 
unique solution by the theorem in [6]. 

Note that the five codes above have d = (p + 7)/2. This is just equal 
to the weight of linear combinations of the basis vectors taken 2 at a 
time. If all the codes of the family were to have this same property, 
then this would be the first constructive family of codes with k/n and 
d/n both bounded away from zero. Also the associated 5-designs 
would provide the first infinite family of 5-designs. 

The computer calculations were shortened by the fact that the 
matrix Sp is invariant under the cyclic shift. I am very grateful to 
Mrs. Minja Choe for her expert programming. Her acute comments 
led to a reduction of the number of combinations needed. 

I wish to acknowledge helpful discussions with Dr. E. F. Assmus, 
Jr., Professor A. M. Gleason, Dr. H. F. Mattson, Jr., Mr. John 
Pierce, and Dr. Richard Turyn. 
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