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A C00 manifold M together with a C00 action of 0(n) on M is said 
to be a regular O(w)-manifold if, for each ra£ ilf, the isotropy group 
of m, 0(n)m = {g£0(w) |gw = m } , is conjugate in 0(n) to 0(p) for 
some p^n; 0(p) is understood to be imbedded in 0(n) in the standard 
way [3]. Compact regular 0(n)-manifolds M[, M\ are said to be 
(regularly) cobordant if there exists a compact regular 0(n) -manifold 
W*+1 with dW*+1 equivariantly diffeomorphic to M^JM%. 

The set of cobordism classes of regular 0(n)-manifolds of dimension 
5 will be denoted by SSlO(n)8. SftO(w)* is a graded algebra over Sft*, the 
cobordism ring of unoriented manifolds; addition is given by disjoint 
union, multiplication by cartesian product (with the diagonal action 
gimi, tn2) = (gtni, gnu), (mu ^ G i l f i X ^ ) and 9Î* acts by cartesian 
product (with the obvious action g(mi, m2) = (mi, gm2), (mu m2) 
GM1XM2, M e ? ) * * , [Jbf,]eSRO(n)*). 

EXAMPLES. (A) Let Jlf = point. Then [jkf]£9i0(w). The submodule 
of 3l0(n) (as a Sft* module) generated by [M] [i.e. trivial 0(n) mani
folds] is isomorphic to 5ft* and we clearly have a decomposition 
»0(n)* = Sfee$0(f*)*. 

(B) Any manifold with a differentiable involution is a regular 
0(1) manifold. 

(C) If M is a regular 0(n) manifold then by restricting the action 
to 0(n — 1) C0(n) we get a regular 0(n — 1) manifold. Since restriction 
respects cobordism there is an Sft* map p: 3l0(n)*-*yi0(n — 1)*. 

(D) Given a regular 0(n) manifold M, one can extend the action 
to a regular 0(n+l) action on 0(n+l)Xo(n)M and hence there 
is an 5ft* map ext: 9ÎO(w),->5RO(w+l)8+tt. 

(E) Let M be a. regular 0(1) manifold and let P be an 0(n — 1) 
principal bundle. Then PXM is an 0(n — 1)X0(1) manifold and 
0(w)Xo(n-i)xo(i)^XM is a regular 0(n) manifold. Hence, there is a 
homomorphism h: 910(1) ®tâfU(B0(n-l))->W0(n)*. 

THEOREM, (i) 9£0(w)* is a/ree Sft* module on countdbly many genera
tors: 

(ii) tóe algebra structure is given by xy = 0 for x, y&!iO(n)*, n>l, 
(iii) p I 5ft 0(w)* is tóe zero raa£, 
(iv) ext|$ftO(w)* is a monomorphism onto a direct summand of 

9t0(w+l)*; ext 15ft* is zero, 
(v) h is an epimorphism. 
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COROLLARY 1. If M is a nontrivial regular 0(n) manifold without 
boundary then there exists a regular 0(n) manifold M', regularly cobor-
dant to M, such that each isotropy group in Mf is either conjugate to 
0(1) or is trivial. In particular, SO(n) acts freely on M'. 

COROLLARY 2. If M and M' are regularly cobordant 0(n) -manifolds 
such that each isotropy group in M and M' is conjugate to 0(1) or is 
trivial then there is a regular cobordism W between M and Mr such that 
each isotropy group in W is conjugate to 0(2) or 0(1) or is trivial. 

Construction of generators. I t is shown in [2] that 9tO(l)* 
= St°-2 yi*(BO(k)). The isomorphism is constructed as follows: Let 
E—>M be a differentiate k plane bundle over M and let D(E), 
S(E), P(E) be respectively the unit disc bundle, sphere bundle, and 
projective bundle of E. Let L—>P(E) be the disc bundle associated 
to the 5° bundle S(E)-*P(E). Then W8(E) D(E) is the 0(1) manifold 
corresponding to [E]E:^l*(BO(k)). If £r denotes the canonical line 
bundle over Pr associated to Sr-*Pr then an -ft* basis for 9l*(B0(k)) is 
given by the external products £nX£»2 • • • X£*fc where i\^i% • • • 
è 4 è O [2]. Similarly, every principle 0(w —1) bundle is cobordant 
to a linear combination (with coefficients in 5ft*) of bundles 
P(si • • ' V i ) = S8lX5»2 • • • X S ^ X g c n - D O f a - l ) where Q(n-1) 
is the product of 0(1) with itself (n~l) times and SiàSs • • • Sn-iàO. 
Hence, by example E and (v) of the theorem we have 

PROPOSITION 1. The manifolds 

M(ih i2 • • • ik\ si • • • sn-i) = *(fe<! X fc, • • • X &J, [P(si • • • J » - I ) ] ) 

withii^H • • • à 4 ; $1^*2 • • • èsn- i and k^2 generate 9tO(w)* as an 
9t* module. 

Note that the dimension of M(iu • • • 4 ; Si • • • sn-i) is 

* ^ n(n — 1) 

These generators are not linearly independent—selecting a basis from 
them seems difficult. However, we do have the 

PROPOSITION 2. The collections of manifolds M(ii, • • • 4-i , 0; 
Si ' • • sn-i) ^1^2 • • • 4 - i ; ^ I ^ ^ J • • • Sn-iî &^2 are linearly inde
pendent over 5ft* and generate a direct summand of 3l0(n)*. 

PROPOSITION 3. All dependence relations among the generators are 
generated by relations involving a fixed k. 
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The proof of these propositions involves an application of the spec
tral sequence of [4] for the group 0(n) and the representation pn®6 
where p» is the standard representation at 0(n) and 0 is the trivial 
representation. In particular, we have 

PROPOSITION 4. There is a first quadrant spectral sequence EVA whose 
E1 term is given by 

E1*,* = E W*(BO(k) X BO(q)) 0 ^ q < n, 
k 

= m*(BO(n)) q = n, 
= 0 q > n, 

and whose E™ term is associated to a filtration of $10(w)*. Moreover, 
dx: Ei,ff->Eitff+1 is given by di = p*oir* where w#:3l*(B0(k)XB0(q)) 
-^$l*(BO(k — l)XBO(l)XBO(q))isthe bordism transfer homomorphism 
[ l ] associated to the natural projection IT: B(0(k — l)XO(l)XO(q)) 
-^>B(fl(k)XO(q)) and p* is induced by p: B(0(k-l)X0(1)Xo[q)) 
-*B(0(k-l)X0(q+l)). 

The computations are best done in cobordism. One notes that 
d1:m*(B(0(k)XO(q)))-*<$l*(B(0(k + l)XO(q-l))) is linear as an 
yi*(BO(k+q)) module map. Let W\ • • • Wk+q be the cobordism 
Stiefel-Whitney classes of BO(k+q) and vi, • • • vq the cobordism 
Stief el-Whitney classes of BO{q). 

PROPOSITION 5. yi*(BO(k)XBO(q)) is a free finitely generated 
$l*(BO(k+q)) module with generators {v^ • • • v**} where ij^O and 

Finally, we have 

PROPOSITION 6. Up to units 

d1(VÏvï • • • V[q) - 0 ifHij<ky 

= T W - - - T £ I if E * - * 

where ViE.yt*(BO(q — l)). Hence, the sequence 

m*(BO(k) X BO(q)) 4 9l*(B0(k + 1) 

X BO(q - 1)) A 9l*(B0(k + 2) X BO(q - 2)) 

is exact if k ^ 0 and the spectral sequence collapses at the E2 level. 

Theorem 1 now follows quickly. 
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