CONTRACTIVE PROJECTIONS AND PREDICTION OPERATORS¹

BY M. M. RAO

Communicated by Jack Schwartz, July 7, 1969

1. Introduction. The purpose of this note is to present some results on characterizations of subspaces of a general class of Banach function spaces (BFS) admitting contractive projections onto them, and to include an application to nonlinear prediction (and approximation) theory.

Let L^{ρ} be the subspace of all measurable scalar functions f on (Ω, Σ, μ) with $\rho(f) = \rho(|f|) < \infty$, where $\rho(\cdot)$ is a function norm, i.e., a norm with the additional properties

- (i) $0 \le f_n \uparrow \Rightarrow \rho(f_n) \uparrow$, and
- (ii) $\rho(\cdot)$ verifies the triangle inequality for infinite sums. Then L^{ρ} is also complete, called a BFS, (cf. [6] and [4]). It will also be assumed, for convenience, that $0 \le f_n \uparrow f \Rightarrow \rho(f_n) \uparrow \rho(f)$, the Fatou property. $\rho(\cdot)$ is an absolutely continuous norm (a.c.n.) if for each $f \in L^{\rho}$, $\rho(f\chi_{A_n}) \to 0$ for any A_n in Σ , $A_n \downarrow \emptyset$. If \mathfrak{X} is a B-space, $L^{\rho}_{\mathfrak{X}}$ is the space of \mathfrak{X} -valued strongly measurable functions f on Ω , with $\rho(|f|_{\mathfrak{X}}) < \infty$, where $\rho(\cdot)$ is as above. Then $L^{\rho}_{\mathfrak{X}}$ is also complete. Finally let $\mathfrak{M}^{\rho}_{\mathfrak{X}} = \overline{\sup}\{fx: f \in L^{\rho}, x \in \mathfrak{X}\} \subset L^{\rho}_{\mathfrak{X}}$. A projection is a linear idempotent operator.

The projection problem, stated at the outset, has been first treated for $L^{\rho} = L^{1}$ in [5], and a more detailed consideration of the same case, with $\mu(\Omega) < \infty$, has been given in [2]. If $L^{\rho} = L^{p}$, also with $\mu(\Omega) < \infty$, it was then considered in [1], and these results were extended for $L^{\rho} = L^{\Phi}$, the Orlicz spaces, with a.c.n. and μ σ -finite, in [10]. The general solution of the problem in the scalar case, and a less general one in the vector case, will be given below.

2. Contractive projections. Let $S \subset L^p$ be a closed subspace. If $L^p \neq L^2$, then, as is well known, not every S is the range of a bounded projection. The positive solution is given by the following result for L^p -spaces. (An operator T is positive if $Tf \geq 0$ for $f \geq 0$.)

THEOREM 1. If (Ω, Σ, μ) is a measure space, let $L^{\rho}(\Sigma)$ be the BFS defined above. Consider the statements:

- (a) S is the range of a (positive) contractive projection in $L^{\rho}(\Sigma)$.
- (b) there is an isometric isomorphism $\Psi: L^{\rho}(\Sigma) \mapsto L^{\rho}(\Sigma)$, $(\Psi = identity)$ such that

¹ Supported, in part, under the NSF grant GP-8777.

- (i) $\Psi(S)$ is a B-lattice, i.e., a selfadjoint space with real functions forming a lattice, and
 - (ii) $0 \leq f_n \in \Psi(S), f_n \uparrow f, f \in L^{\rho}(\Sigma) \Rightarrow f \in \Psi(S).$
- (c) there is a (positive) isometric isomorphism between some $L^{\rho}(\mathbb{B})$ on some measure space (S, \mathbb{B}, μ_1) and S.
- (d) same as (c) except "topological equivalence" replaces "isometric isomorphism."

Then one has (c) \Rightarrow (a) \Leftrightarrow (b) \Rightarrow (d). In case $\rho(\cdot)$ also verifies, $\chi_A \in L^{\rho}(\Sigma)$ for each $A \in \Sigma$ with $\mu(A) < \infty$, then (a) \Leftrightarrow (c) also holds.

REMARK. If $\rho(f) = \int_0^1 |f| d\mu/x$, with $\Omega = [0, 1]$, $\mu = \text{Leb.meas.}$, then $\rho(\cdot)$ is a function norm, but $\rho(\chi_{\Omega}) = \infty$. Thus the last condition of the theorem is a restriction on ρ . It can be shown easily that b(ii) automatically holds if ρ is an a.c.n., but will be needed otherwise.

This result is proved through several isomorphisms using equivalent measure spaces and the results of [13]. However, for an application of the latter, a first reduction is needed and is provided by the following result which has independent interest.

THEOREM 2. If $L^{\rho}(\Sigma)$ is a BFS on (Ω, Σ, μ) , then there exists a measure space (S, \mathfrak{B}, ν) where S is a locally compact space, \mathfrak{B} is a σ -field generated by the compact subsets of S and ν is a measure assigning finite measure for compacts, in terms of which $L^{\rho}(S, \mathfrak{B}, \nu)$, or $L^{\rho}(\mathfrak{B})$, is isometrically (and lattice) isomorphic to $L^{\rho}(\Sigma)$. Moreover each f in $L^{\rho}(\mathfrak{B})$ has a σ compact support. If there exists a strictly positive element in $L^{\rho}(\Sigma)$, then S can be chosen compact, so that (S, \mathfrak{B}, ν) is a finite measure space.

If μ is σ -finite then a strictly positive element always exists in $L^p(\Sigma)$ (e.g., a weak unit, cf. [6, p. 153]) and the last part contains this case. This result is proved using a method of proof of ([8, Theorem 2.1]) and some results of [13]. (See also [3] for the L^1 -case.) With this reduction, the problem of Theorem 1 can be transfered to $L^p(\mathfrak{G})$. Then it can be isometrically embedded in $L^p(\mathfrak{G})$ on a localizable measure space $(\tilde{S}, \tilde{\mathfrak{G}}, \tilde{\mathfrak{p}})$ where \mathfrak{G} goes, under an algebraic isomorphism, into a subring of \mathfrak{G} , [13, Theorem 3.4]. Then the proof is successively reduced to the case of finite measure space where the methods and ideas of [2] and [10] can be generalized and used. In this way the full result of Theorem 1 is established.

In general there will be many contractive projections onto S, when one exists. The following gives a uniqueness result.

PROPOSITION 3. Suppose $L^{\rho}(\Sigma)$ is a rotund (= strictly convex) and smooth (= norm is Gâteaux differentiable) reflexive space on (Ω, Σ, μ) . Then a closed subspace $S \subset L^{\rho}(\Sigma)$ can be the range of atmost one contrac-

tive projection. If in particular $S = L^{\rho}(\mathfrak{G})$, $\mathfrak{G} \subset \Sigma$, a σ -field, then there exists a unique positive contractive projection onto S, namely the (generalized) conditional expectation $E^{\mathfrak{G}}: L^{\rho}(\Sigma) \mapsto L^{\rho}(\mathfrak{G})$.

The case of $L^p = L^p$, $1 , <math>\mu(\Omega) < \infty$, of the above result was obtained in ([1, p. 392]). The general form of P is not-simple. The following case is illustrative.

PROPOSITION 4. Let $P: L^{\rho}(\Sigma) \mapsto L^{\rho}(\mathfrak{B})$ be a contractive projection (which exists by Theorem 1), where $\mathfrak{B} \subset \Sigma$ is a σ -field with $\mu_{\mathfrak{B}}$ σ -finite, and $L^{\rho}(\Sigma)$ is a BFS. Then there exists a locally integrable function g such that

- (i) $P(\cdot) = E^{\mathfrak{A}}(g \cdot)$, and
- (ii) $E^{\mathfrak{B}}(g) = 1$ a.e., where $E^{\mathfrak{B}}$ is the conditional expectation relative to \mathfrak{B} .

This shows that while $E^{\mathfrak{B}}$ itself is a contractive projection onto $L^{\rho}(\mathfrak{B})$, it is not the general form of the operator. If ρ is an a.c.n., then it can be shown that g=1 a.e. here, and this is not necessarily true in the general case. The above two results are proved by an extension of the methods of [10]. A special case of the above proposition for L^{Φ} -spaces, with $\mu(\Omega) < \infty$, was discussed in [11].

For the case of \mathfrak{M}_{x}^{ρ} spaces, the following result holds.

THEOREM 5. Let $L^{\rho}(\Sigma)$ and $\mathfrak{M}_{\mathfrak{X}}^{\rho}$ be as defined in §1. If $S \subset L^{\rho}(\Sigma)$ is a closed subspace, let $S_{\mathfrak{X}} = \overline{\operatorname{sp}} \{ fx \colon f \in S, \ x \in \mathfrak{X} \} \subset \mathfrak{M}_{\mathfrak{X}}^{\rho}$. Also let $\chi_{A} \in L^{\rho}(\Sigma)$ for each $A \in \Sigma$ with $\mu(A) < \infty$. Then the following four statements are equivalent:

- (i) \exists contractive projection $P: L^p(\Sigma) \mapsto \$$.
- (ii) \exists contractive projection $P: \mathfrak{M}_{\mathfrak{X}}^{\rho} \longrightarrow S_{\mathfrak{X}}$.
- (iii) $\exists L^{\rho}(\mathfrak{B}_1, \mu_1)$, on some measure space $(S_1, \mathfrak{B}_1, \mu_1)$ and S is isometrically isomorphic to $L^{\rho}(\mathfrak{B}_1, \mu_1)$.
 - (iv) $S_{\mathfrak{X}}$ is isometrically isomorphic to $\mathfrak{M}_{\mathfrak{X}}^{\rho}(\mathfrak{B}_{1}, \mu_{1})$.

This result is proved on using Theorem 1, and the fact that $L^p \otimes_{\gamma} \mathfrak{X} \subset \mathfrak{M}_{\mathfrak{X}}^p$ and is dense in the latter (see [9]). Here \otimes_{γ} is the greatest cross-norm, and one then uses a result on projections in cross-spaces [12, p. 58]. The general case of $L^p_{\mathfrak{X}}$ itself does not seem to follow in this way. The above one already includes the $L^p_{\mathfrak{X}}$, $1 \leq p \leq \infty$ case.

3. Prediction operators. A subspace $M \subset L^{\rho}$ is said to be a Tshebyshev subspace if for each $x \in L^{\rho}$ there is a unique $x_0 \in M$ with $\rho(x-x_0) = \min \{ \rho(x-y) : y \in M \}$. The operator $P_M : x \mapsto x_0 \in M$, is

called a *prediction operator* in nonlinear prediction theory. Though $P_M^2 = P_M$, it is not linear in general. If it is linear, the powerful methods of linear analysis will be available in their study. So this is a natural question to treat. If P_M is linear, then $Q = I - P_M$ is a contractive projection with M as its null space (and the converse also holds). This is the connection between projections and predictions, and a solution can be presented as follows.

THEOREM 6. Let $M \subset L^{\rho}$ be a Tshebyshev subspace, and P_M be the prediction operator for M. If P_M is linear then the quotient space L^{ρ}/M is topologically equivalent to $L^{\rho}(\mathfrak{B})$ on some measure space (S, \mathfrak{B}, μ_1) . Conversely, if L^{ρ}/M is isometrically isomorphic to $L^{\rho}(\mathfrak{B})$ on some (S, \mathfrak{B}, μ_1) then P_M is linear.

In case $\chi_A \in L^p$ for each $A \in \Sigma$, $\mu(A) < \infty$, then the above can be stated as: P_M is linear $\Leftrightarrow L^p/M$ is isometrically isomorphic to an $L^p(\mathbb{G})$. If $L^p = L^p$, $1 , <math>\mu(\Omega) < \infty$, the latter has been obtained in [1]. The general case can be proved quickly with the results of the preceding section. However, it was noted in [10], that for the case $L^p \neq L^2$, M must be relatively complicated since P_M will not be linear if M is of the form $L^p(\Sigma_1)$, $\Sigma_1 \subset \Sigma$, a σ -field.

The proofs of all the results above involve first a characterization of the adjoint space $(L^{\rho})^*$ of L^{ρ} . This is involved. It is obtained by generalizing the work of ([7] and [4]) appropriately. With these results (and those of [9]), and of [13], the above bare sketch is completed. The details and related results will be published separately.

REFERENCES

- 1. T. Andô, Contractive projections in L^p-space, Pacific J. Math. 17 (1966), 391-405.
- 2. R. G. Douglas, Contractive projections in an L¹-space, Pacific J. Math. 15 (1965), 443-462.
 - 3. H. W. Ellis, On the dual of L1, Canad. Math. Bull. 8 (1965), 809-818.
- 4. N. E. Gretsky, Representation theorems on Banach functions spaces, Bull. Amer. Math. Soc. 74 (1968), 705-709 (cf., also Mem Amer. Math. Soc. No. 84).
- A. Grothendieck, Une caractérisation vectorielle-métrique des espaces L¹, Canad.
 Math. 7 (1955), 552-561.
- 6. W. A. J. Luxemburg and A. C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann. 149 (1963), 150-180.
- 7. M. M. Rao, Linear functionals on Orlicz spaces: general theory, Pacific J. Math. 25 (1968), 553-585.
- 8. ——, Stone-Weierstrass theorems for function spaces, J. Math. Anal. Appl. 25 (1969), 362-371.
- 9. ——, Produits tensoriels et espaces des fonctions, C. R. Acad Sci. Paris 268 (1969), 1599-1601.

- 10. ——, Inference in stochastic processes. IV (to appear).
 11. ——, Conditional expectations and closed projections, Indag. Math. 27 (1965), 100-112.
- 12. R. Schatten, A theory of cross-spaces, Ann. Math. Studies, no. 26, Princeton Univ. Press, Princeton, N. J., 1950.
 - 13. I. E. Segal, Equivalence of measure spaces, Amer. J. Math. 73 (1951), 275-313.

MATHEMATISCHE INSTITUT DER UNIVERSITÄT, WIEN, AND CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PENNSYLVANIA 15213