CONTRACTIVE PROJECTIONS AND PREDICTION OPERATORS ${ }^{1}$

BY M. M. RAO
Communicated by Jack Schwartz, July 7, 1969

1. Introduction. The purpose of this note is to present some results on characterizations of subspaces of a general class of Banach function spaces (BFS) admitting contractive projections onto them, and to include an application to nonlinear prediction (and approximation) theory.

Let L^{ρ} be the subspace of all measurable scalar functions f on (Ω, Σ, μ) with $\rho(f)=\rho(|f|)<\infty$, where $\rho(\cdot)$ is a function norm, i.e., a norm with the additional properties
(i) $0 \leqq f_{n} \uparrow \Rightarrow \rho\left(f_{n}\right) \uparrow$, and
(ii) $\rho(\cdot)$ verifies the triangle inequality for infinite sums. Then L^{p} is also complete, called a BFS, (cf. [6] and [4]). It will also be assumed, for convenience, that $0 \leqq f_{n} \uparrow f \Rightarrow \rho\left(f_{n}\right) \uparrow \rho(f)$, the Fatou property. $\rho(\cdot)$ is an absolutely continuous norm (a.c.n.) if for each $f \in L^{\rho}$, $\rho\left(f \chi_{A_{n}}\right) \rightarrow 0$ for any A_{n} in $\Sigma, A_{n} \downarrow \varnothing$. If \mathfrak{X} is a B-space, L_{X}^{ρ} is the space of \mathfrak{X}-valued strongly measurable functions f on Ω, with $\rho\left(|f|_{x}\right)<\infty$, where $\rho(\cdot)$ is as above. Then L_{x}^{ρ} is also complete. Finally let \mathscr{N}_{x}^{ρ} $=\overline{\mathrm{sp}}\left\{f x: f \in L^{p}, x \in \mathfrak{X}\right\} \subset L_{x}^{p}$. A projection is a linear idempotent operator.

The projection problem, stated at the outset, has been first treated for $L^{\rho}=L^{1}$ in [5], and a more detailed consideration of the same case, with $\mu(\Omega)<\infty$, has been given in [2]. If $L^{\rho}=L^{p}$, also with $\mu(\Omega)<\infty$, it was then considered in [1], and these results were extended for $L^{p}=L^{\Phi}$, the Orlicz spaces, with a.c.n. and $\mu \sigma$-finite, in [10]. The general solution of the problem in the scalar case, and a less general one in the vector case, will be given below.
2. Contractive projections. Let $\delta \subset L^{\rho}$ be a closed subspace. If $L^{\rho} \neq L^{2}$, then, as is well known, not every S is the range of a bounded projection. The positive solution is given by the following result for L^{ρ}-spaces. (An operator T is positive if $T f \geqq 0$ for $f \geqq 0$.)

Theorem 1. If (Ω, Σ, μ) is a measure space, let $L^{\rho}(\Sigma)$ be the $B F S$ defined above. Consider the statements:
(a) \mathcal{S} is the range of a (positive) contractive projection in $L^{p}(\Sigma)$.
(b) there is an isometric isomorphism $\Psi: L^{p}(\Sigma) \mapsto L^{\rho}(\Sigma),(\Psi=$ identity) such that

[^0](i) $\Psi(\$)$ is a B-lattice, i.e., a selfadjoint space with real functions forming a lattice, and
(ii) $0 \leqq f_{n} \in \Psi(\delta), f_{n} \uparrow f, f \in L^{\rho}(\Sigma) \Rightarrow f \in \Psi(\$)$.
(c) there is a (positive) isometric isomorphism between some $L^{\rho}(\mathbb{B})$ on some measure space ($S, \mathbb{B}_{1}, \mu_{1}$) and S .
(d) same as (c) except "topological equivalence" replaces "isometric isomorphism."

Then one has $(\mathrm{c}) \Rightarrow(\mathrm{a}) \Leftrightarrow(\mathrm{b}) \Rightarrow(\mathrm{d})$. In case $\rho(\cdot)$ also verifies, $\chi_{A} \in L^{\rho}(\Sigma)$ for each $A \in \Sigma$ with $\mu(A)<\infty$, then (a) \Leftrightarrow (c) also holds.

Remark. If $\rho(f)=\int_{0}^{1}|f| d \mu / x$, with $\Omega=[0,1], \mu=$ Leb.meas., then $\rho(\cdot)$ is a function norm, but $\rho\left(\chi_{\Omega}\right)=\infty$. Thus the last condition of the theorem is a restriction on ρ. It can be shown easily that b (ii) automatically holds if ρ is an a.c.n., but will be needed otherwise.

This result is proved through several isomorphisms using equivalent measure spaces and the results of [13]. However, for an application of the latter, a first reduction is needed and is provided by the following result which has independent interest.

Theorem 2. If $L^{\rho}(\Sigma)$ is a BFS on (Ω, Σ, μ), then there exists a measure space (S, \mathbb{B}, ν) where S is a locally compact space, © is a σ-field generated by the compact subsets of S and ν is a measure assigning finite measure for compacts, in terms of which $L^{\rho}(S, \mathbb{B}, \nu)$, or $L^{\rho}(\mathbb{B})$, is isometrically (and lattice) isomorphic to $L^{\rho}(\Sigma)$. Moreover each f in $L^{\rho}(\mathbb{B})$ has a σ compact support. If there exists a strictly positive element in $L^{\rho}(\Sigma)$, then S can be chosen compact, so that (S, \mathbb{B}, ν) is a finite measure space.

If μ is σ-finite then a strictly positive element always exists in $L^{\rho}(\Sigma)$ (e.g., a weak unit, cf. [6, p. 153]) and the last part contains this case. This result is proved using a method of proof of ($[8$, Theorem $2.1]$) and some results of [13]. (See also [3] for the L^{1}-case.) With this reduction, the problem of Theorem 1 can be transfered to $L^{\rho}(\mathbb{B})$. Then it can be isometrically embedded in $L^{\rho}(\widetilde{\mathbb{B}})$ on a localizable measure space ($\tilde{S}, \tilde{\mathscr{A}}, \tilde{\nu})$ where $ß$ goes, under an algebraic isomorphism, into a subring of $\tilde{\mathscr{B}},[13$, Theorem 3.4]. Then the proof is successively reduced to the case of finite measure space where the methods and ideas of [2] and [10] can be generalized and used. In this way the full result of Theorem 1 is established.

In general there will be many contractive projections onto S, when one exists. The following gives a uniqueness result.

Proposition 3. Suppose $L^{\rho}(\Sigma)$ is a rotund (=strictly convex) and smooth ($=$ norm is Gâteaux differentiable) reflexive space on (Ω, Σ, μ). Then a closed subspace $s \subset L^{\rho}(\Sigma)$ can be the range of atmost one contrac-
tive projection. If in particular $S=L^{P}(\mathbb{B}), \mathbb{B} \subset \Sigma, a \sigma$-field, then there exists a unique positive contractive projection onto S , namely the (generalized) conditional expectation $E^{\mathbb{Q}}: L^{p}(\Sigma) \mapsto L^{p}(\mathbb{Q})$.

The case of $L^{\rho}=L^{p}, 1<p<\infty, \mu(\Omega)<\infty$, of the above result was obtained in ($[1, \mathrm{p} .392]$). The general form of P is not-simple. The following case is illustrative.

Proposition 4. Let $P: L^{p}(\Sigma) \mapsto L^{p}(\mathbb{B})$ be a contractive projection (which exists by Theorem 1), where $\mathbb{C} \subset$ is a σ-field with $\mu_{\mathbb{Q}} \sigma$-finite, and $L^{\rho}(\Sigma)$ is a BFS. Then there exists a locally integrable function g such that
(i) $P(\cdot)=E^{\circledR}(g \cdot)$, and
(ii) $E^{\circledR}(g)=1$ a.e., where $E^{\mathbb{B}}$ is the conditional expectation relative to ©.
This shows that while $E^{\mathbb{B}}$ itself is a contractive projection onto $L^{\rho}(\mathbb{B})$, it is not the general form of the operator. If ρ is an a.c.n., then it can be shown that $g=1$ a.e. here, and this is not necessarily true in the general case. The above two results are proved by an extension of the methods of [10]. A special case of the above proposition for L^{Φ}-spaces, with $\mu(\Omega)<\infty$, was discussed in [11].

For the case of $\mathscr{N T}_{ \pm}^{\infty}$ spaces, the following result holds.
Theorem 5. Let $L^{\rho}(\boldsymbol{\Sigma})$ and $\mathfrak{I n}_{\dot{f}}^{\rho}$ be as defined in $\S 1$. If $s \subset L^{\rho}(\Sigma)$ is a closed subspace, let $\mathrm{s}_{\mathfrak{x}}=\overline{\mathrm{sp}}\{f x: f \in \mathcal{S}, x \in \mathfrak{X}\} \subset \mathbb{N}_{\mathfrak{x}}^{\rho}$. Also let $\chi_{A} \in L^{\rho}(\Sigma)$ for each $A \in \Sigma$ with $\mu(A)<\infty$. Then the following four statements are equivalent:
(i) \exists contractive projection $P: L^{p}(\Sigma) \mapsto s$.
(ii) \exists contractive projection P : $\mathfrak{N r}_{\substack{0}}^{(2)} \rightarrow$
(iii) $3 L^{p}\left(\mathbb{G}_{1}, \mu_{1}\right)$, on some measure space $\left(S_{1}, \mathbb{B}_{1}, \mu_{1}\right)$ and δ is isometrically isomorphic to $L^{p}\left(\mathbb{Q}_{1}, \mu_{1}\right)$.
(iv) $S_{\mathfrak{X}}$ is isometrically isomorphic to $\mathfrak{N t}^{\rho}\left(\Theta_{1}, \mu_{1}\right)$.

This result is proved on using Theorem 1, and the fact that $L^{\rho} \otimes_{\gamma} X \subset \Re_{x}^{e}$ and is dense in the latter (see [9]). Here \otimes_{γ} is the greatest cross-norm, and one then uses a result on projections in crossspaces [12, p. 58]. The general case of L_{z}^{ρ} itself does not seem to follow in this way. The above one already includes the $L_{x}^{p}, 1 \leqq p \leqq \infty$ case.
3. Prediction operators. A subspace $M \subset L^{p}$ is said to be a Tshebyshev subspace if for each $x \in L^{\rho}$ there is a unique $x_{0} \in M$ with $\rho\left(x-x_{0}\right)=\min \{\rho(x-y): y \in M\}$. The operator $P_{M}: x \mapsto x_{0} \in M$, is
called a prediction operator in nonlinear prediction theory. Though $P_{M}^{2}=P_{M}$, it is not linear in general. If it is linear, the powerful methods of linear analysis will be available in their study. So this is a natural question to treat. If P_{M} is linear, then $Q=I-P_{M}$ is a contractive projection with M as its null space (and the converse also holds). This is the connection between projections and predictions, and a solution can be presented as follows.

Theorem 6. Let $M \subset L^{\rho}$ be a Tshebyshev subspace, and P_{M} be the prediction operator for M. If P_{M} is linear then the quotient space L^{ρ} / M is topologically equivalent to $L^{\rho}(B)$ on some measure space $\left(S, ~ ß, \mu_{1}\right)$. Conversely, if L^{ρ} / M is isometrically isomorphic to $L^{\rho}(\mathbb{B})$ on some $\left(S, @, \mu_{1}\right)$ then P_{M} is linear.

In case $\chi_{A} \in L^{\rho}$ for each $A \in \Sigma, \mu(A)<\infty$, then the above can be stated as: P_{M} is linear $\Leftrightarrow L^{\rho} / M$ is isometrically isomorphic to an $L^{\rho}(ß)$. If $L^{\rho}=L^{p}, 1<p<\infty, \mu(\Omega)<\infty$, the latter has been obtained in [1]. The general case can be proved quickly with the results of the preceding section. However, it was noted in [10], that for the case $L^{\rho} \neq L^{2}, M$ must be relatively complicated since P_{M} will not be linear if M is of the form $L^{\rho}\left(\Sigma_{1}\right), \Sigma_{1} \subset \Sigma$, a σ-field.

The proofs of all the results above involve first a characterization of the adjoint space $\left(L^{p}\right)^{*}$ of L^{p}. This is involved. It is obtained by generalizing the work of ([7] and [4]) appropriately. With these results (and those of [9]), and of [13], the above bare sketch is completed. The details and related results will be published separately.

References

1. T. Ando, Contractive projections in $L^{\text {pr}}$-space, Pacific J. Math. 17 (1966), 391405.
2. R. G. Douglas, Contractive projections in an L^{1}-space, Pacific J. Math. 15 (1965), 443-462.
3. H. W. Ellis, On the dual of L^{1}, Canad. Math. Bull. 8 (1965), 809-818.
4. N. E. Gretsky, Representation theorems on Banach functions spaces, Bull. Amer. Math. Soc. 74 (1968), 705-709 (cf., also Mem Amer. Math. Soc. No. 84).
5. A. Grothendieck, Une caractérisation vectorielle-métrique des espaces L^{1}, Canad. J. Math. 7 (1955), 552-561.
6. W. A. J. Luxemburg and A. C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann. 149 (1963), 150-180.
7. M. M. Rao, Linear functionals on Orlicz spaces: general theory, Pacific J. Math. 25 (1968), 553-585.
8. -, Stone-Weierstrass theorems for function spaces, J. Math. Anal. Appl. 25 (1969), 362-371.
9. -, Produits tensoriels et espaces des fonctions, C. R. Acad Sci. Paris 268 (1969), 1599-1601.
10. ——, Inference in stochastic processes. IV (to appear).
11. -, Conditional expectations and closed projections, Indag. Math. 27 (1965), 100-112.
12. R. Schatten, A theory of cross-spaces, Ann. Math. Studies, no. 26, Princeton Univ. Press, Princeton, N. J., 1950.
13. I. E. Segal, Equivalence of measure spaces, Amer. J. Math. 73 (1951), 275-313.

Mathematische Institut der Universität, Wien, and
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

[^0]: ${ }^{1}$ Supported, in part, under the NSF grant GP-8777.

