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1. Introduction. The purpose of this note is to present some results 
on characterizations of subspaces of a general class of Banach func­
tion spaces (BFS) admitting contractive projections onto them, and 
to include an application to nonlinear prediction (and approximation) 
theory. 

Let Lp be the subspace of all measurable scalar functions ƒ on 
(0, 2 , n) with p(f) = p ( | / | ) < °°, where p(-) is a function norm, i.e., a 
norm with the additional properties 

(i) 0^/nî=>p(fn)î,and 
(ii) p(-) verifies the triangle inequality for infinite sums. Then Lp 

is also complete, called a BFS, (cf. [ô] and [4]). I t will also be as­
sumed, for convenience, that 0 g / n î/==>p(/n) Î p(f)> the Fatou prop­
erty. p(-) is an absolutely continuous norm (a.c.n.) if for each ƒ £ £ * , 
p(fXAn)-40 for any An in 2 , An | 0 . If 36 is a J5-space, L% is the space 
of 36-valued strongly measurable functions ƒ on £2, with p(\f\ *) < °°, 
where p(-) is as above. Then L£ is also complete. Finally let 9fft£ 
= sp{ƒ#:ƒ£!>, x G ï } C ^ | . A projection is a linear idempotent 
operator. 

The projection problem, stated at the outset, has been first treated 
for Lp — Ll in [S], and a more detailed consideration of the same case, 
with ju(Q) < oo, has been given in [2]. If Z> = Z>, also with ju(ft) < oo, 
it was then considered in [ l ] , and these results were extended for 
Lfi^L*, the Orlicz spaces, with a.c.n. and JJ, <r-finite, in [lO]. The 
general solution of the problem in the scalar case, and a less general 
one in the vector case, will be given below. 

2. Contractive projections. Let $QLp be a closed subspace. If 
LP5^L2, then, as is well known, not every S is the range of a bounded 
projection. The positive solution is given by the following result for 
ZAspaces. (An operator T i s positive if Tf^O for /èO.) 

THEOREM 1. If (Î2, S, /x) is a measure space, let LP(S) be the BFS 
defined above. Consider the statements : 

(a) S is the range of a {positive) contractive projection in LPÇ£). 
(b) there is an isometric isomorphism >?: LP(2)>-*Z>(2), 0^ = iden­

tity) such that 
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(i) >£(§) is a B4attice, i.e., a self adjoint space with real functions 
forming a lattice, and 

(ü) o^/»e*(s), ƒ„ Tƒ, /e£'(2)=>/e*(s). 
(c) there is a {positive) isometric isomorphism between some Lp(($>) 

on some measure space (S, (B, Mi) and S. 
(d) same as (c) except "topological equivalence" replaces "isometric 

isomorphism." 
Then one has (c)=»(a)<=>(b)=»(d). Incasep(-) also verifies, XA&LP(2) 

for each A £ 2 with ix(A) < oo, then (a)<=>(c) a/^o holds. 

REMARK. If p(f) =Jl\f\dix/x, with 0 = [0, l ] , ju = Leb.meas., then 
p(-) is a function norm, but p(xo) = °° • Thus the last condition of the 
theorem is a restriction on p. I t can be shown easily that &(ii) auto­
matically holds if p is an a.c.n., but will be needed otherwise. 

This result is proved through several isomorphisms using equiva­
lent measure spaces and the results of [13]. However, for an appli­
cation of the latter, a first reduction is needed and is provided by the 
following result which has independent interest. 

THEOREM 2. If 2>(2) is aBFS on (Q, 2 , jx), then there exists a measure 
space (S, (B, v) where S is a locally compact space, (B is a cr-field gener­
ated by the compact subsets of S and v is a measure assigning finite mea­
sure for compacts, in terms of which LP(S, (B, v), or Lp((B), is isometri-
cally (and lattice) isomorphic to Lp(L). Moreover each f in Z>((B) has a 
a compact support. If there exists a strictly positive element in LpÇE), 
then S can be chosen compact, so that (S, (B, v) is a finite measure space. 

If /x is (r-finite then a strictly positive element always exists in 
Z>(2) (e.g., a weak unit, cf. [ô, p. 153]) and the last part contains this 
case. This result is proved using a method of proof of ([8, Theorem 
2.1]) and some results of [13]. (See also [3] for the Z^-case.) With 
this reduction, the problem of Theorem 1 can be transfered to Z>((B). 
Then it can be isometrically embedded in Lp((B) on a localizable mea­
sure space (S, 5 , v) where (B goes, under an algebraic isomorphism, 
into a subring of (B, [13, Theorem 3.4]. Then the proof is successively 
reduced to the case of finite measure space where the methods and 
ideas of [2] and [lO] can be generalized and used. In this way the 
full result of Theorem 1 is established. 

In general there will be many contractive projections onto S, when 
one exists. The following gives a uniqueness result. 

PROPOSITION 3. Suppose LpÇE) is a rotund ( = strictly convex) and 
smooth ( = norm is Gâteaux differentiable) reflexive space on (0, 2 , fx). 
Then a closed subspace SC£P(2) can be the range of almost one contrac-
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tive projection. If in particular S = Z>(<B), (BC2, a <r-field, then there 
exists a unique positive contractive projection onto S, namely the {gen­
eralized) conditional expectation £®: IsÇ2)*-*Is{(&). 

The case of Z> = Z>, 1 < £ < O O , /x(Q)<oo, of the above result was 
obtained in ([ l , p. 392]). The general form of P is not-simple. The 
following case is illustrative. 

PROPOSITION 4. Let P:Z>ÇS)»-*Z>((B) be a contractive projection 
{which exists by Theorem 1), where <BC2 is a a-field with /*$ G-finite, 
and LPÇE) is a BFS. Then there exists a locally integrable function g such 
that 

(i) P ( . ) «£*(*• ) • and 
(ii) É*{g) = l a.e., where £® is the conditional expectation relative 

to (B. 

This shows that while Ê* itself is a contractive projection onto 
Z>((B), it is not the general form of the operator. If p is an a.c.n., then 
it can be shown that g = 1 a.e. here, and this is not necessarily true in 
the general case. The above two results are proved by an extension 
of the methods of [lO]. A special case of the above proposition for 
L*-spaces, with JJL{Q) < 00, was discussed in [ l l ] . 

For the case of 91Z& spaces, the following result holds. 

THEOREM 5. Let Lp(2) and 9ïl£ be as defined in §1. If SCi>(2) is a 
closed subspace, let % = sp{/x: ƒ £ § , tf£ï}C9TCx. Also let XAGISÇZ) 

for each A £ 2 with fx{A)<<x>. Then the following four statements are 
equivalent: 

(i) 3 contractive projection P:Z>(2)*-»S. 
(ii) 3 contractive projection P: îïïlfy-^Sx-
(iii) 3Z>(<Bi, Mi)» on some measure space (Si, (Bi, jui) and S is isometri-

cally isomorphic to Z>((Bi, /ii). 
(iv) S% is isometrically isomorphic to SflljKCBi, /xi). 

This result is proved on using Theorem 1, and the fact that 
Lp®yXC(N(>x and is dense in the latter (see [9]). Here ®y is the great­
est cross-norm, and one then uses a result on projections in cross-
spaces [l2, p. 58]. The general case of L\ itself does not seem to 
follow in this way. The above one already includes the Z£, 1 ^p ^ 00 
case. 

3. Prediction operators. A subspace MGL* is said to be a 
Tshebyshev subspace if for each * £ ! > there is a unique x0^M with 
p{x—x0)=min{p{x--y):yE;M}. The operator Pu'-W-^XoCiM, is 



1372 M. M. RAO [November 

called a prediction operator in nonlinear prediction theory. Though 
PM = PM, it is not linear in general. If it is linear, the powerful meth­
ods of linear analysis will be available in their study. So this is a 
natural question to treat. If PM is linear, then Q = I—PM is a con­
tractive projection with M as its null space (and the converse also 
holds). This is the connection between projections and predictions, 
and a solution can be presented as follows. 

THEOREM 6. Let MCLp be a Tshebyshev subspace, and PM be the 
prediction operator f or M. If PM is linear then the quotient space Lp/M 
is topologically equivalent to Lp(($>) on some measure space (5, (B, jui). 
Conversely, if Lp/M is isometrically isomorphic to Lp((&) on some 
(S, (B, jui) then PM is linear. 

In case XAELLP for each 4̂ £ 2 , p{A)< oo, then the above can be 
stated as: PM is linear<=>Z>/ikf is isometrically isomorphic to an I>((B). 
If Lp = Lp, Kp< oo, )Lt(B)< oo, the latter has been obtained in [ l ] . 
The general case can be proved quickly with the results of the pre­
ceding section. However, it was noted in [lO], that for the case 
i^T^L2, M must be relatively complicated since PM will not be linear 
if M is of the form Z>(2i), 2 i C 2 , a <r-field. 

The proofs of all the results above involve first a characterization 
of the adjoint space (Lp)* of Lp. This is involved. I t is obtained by 
generalizing the work of ([7] and [4]) appropriately. With these 
results (and those of [9]), and of [13], the above bare sketch is com­
pleted. The details and related results will be published separately. 
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