SPECTRAL DECOMPOSITION OF ERGODIC FLOWS ON L^{p1}

BY DANIEL FIFE

Communicated by Felix Browder, March 6, 1969

Let M be a totally σ -finite measure space and U_s (s real) be a one parameter group of measure—preserving transformations of Msatisfying appropriate measurability and continuity conditions. We let $U_s: L^p(M) \to L^p(M)$ by $U_s f = f U_s$. If p = 2 Stone's spectral theorem for unitary operators [2] says that there is a spectral family of projections $E_{\lambda}: L^2(M) \to L^2(M)$ such that for $f \in L^2(M)$

(1)
$$U_{s}f = \int_{-\infty}^{\infty} e^{2\pi i\lambda s} dE_{\lambda}f$$

from which we show that if $\psi \in L^1(R)$ and $\hat{\psi}$ is the Fourier transform of ψ ,

(2)
$$\int_{-\infty}^{\infty} \hat{\psi}(\lambda) dE_{\lambda} f = \int_{-\infty}^{\infty} \psi(s) U_s f ds.$$

We will say that a function is normalized at its jumps if it has only jump discontinuities and the value at each jump is the average of the values from the sides. Let χ_{τ} be the normalized characteristic function of $(-\infty, \tau]$. We approximate χ_{τ} pointwise with the Fourier transforms of L^1 functions and use (2) to show for $f \in L^2(M)$, $D_{\lambda}f = E_{\lambda-0}f + E_{\lambda}f - f$ where

(3)
$$D_{\lambda}f = \frac{-1}{i\pi} \text{ p.v.} \int_{-\infty}^{\infty} \frac{1}{s} e^{-2\pi i\lambda s} U_{s}fds$$

and so $E_{\lambda}f = f + \frac{1}{2}D_{\lambda}f - \frac{1}{2}D_{\lambda}^2f$.

A slight modification of a theorem in [1] shows that D_{λ} is a bounded transformation on $L^{p}(M)(1 with the bound independent of <math>\lambda$. This gives

THEOREM 1. D_{λ} and hence E_{λ} extend from $L^{p}(M) \cap L^{2}(M)$ to $L^{p}(M)$ by continuity. For $f \in L^{p}(M)$, $||E_{\lambda}f||_{p}$ is bounded uniformly in λ . $E_{\lambda+0}f = E_{\lambda}f$. $E_{\lambda}E_{\tau}f = E_{\lambda}f$ if $\lambda \leq \tau$. $||E_{\lambda}f||_{p} \rightarrow 0$ as $\lambda \rightarrow -\infty$. $||E_{\lambda}f-f||_{p} \rightarrow 0$ as $\lambda \rightarrow +\infty$.

¹ This work was done as a Ph.D. thesis at the University of Chicago under Professor A. P. Calderón. It was supported by an NSF fellowship.

The theorems from [1] also show that convergence of the symmetrically truncated integrals to the integral in (3) is dominated and pointwise a.e.

We show that $(E_{\lambda}f, g)$ is a continuous function of λ except for a set of jumps which is countable (and does not depend on f, g). Thus we can form the Stieltjes integral of any absolutely continuous function with respect to $(E_{\lambda}f, g)$ over a bounded interval. In particular we can integrate $e^{2\pi i \lambda g}$ over a bounded interval. For f and g in $L^2(M)$

(4)
$$((E_b - E_a)U_s f, g) = \int_a^b e^{2\pi i\lambda s} (U_s f, g) ds.$$

We assume from now on $f \in L^{p}(M)$, $g \in L^{p'}(M)$, 1/p+1/p'=1, 1 . The absolute value of the integral in (4) is no bigger than $<math>(b-a)||f||_{p}||g||_{p'}$ so the integral is a continuous function of f and g. So is the left side of (4). Hence (4) holds for $f \in L^{p}(M)$, $g \in L^{p'}(M)$. Letting $a \to -\infty$ and $b \to \infty$ we get (1) for $L^{p}(M)$ where the integral in (1) may be taken to be a weak integral.

We now define a slight generalization of the Stieltjes integral. Suppose *h* has support in [a, b] and is continuous from the right and has a limit from the left everywhere, and suppose $\Lambda_{\epsilon} = \{\lambda \in [a, b] |$ $|h(\lambda) - h(\lambda - 0)| > \epsilon\}$ is finite for each $\epsilon > 0$ (for example $h(\lambda) = (E_{\lambda}f, g)$). If α is of bounded variation on [a, b] then the integral of *h* with respect to α exists in the following sense: For $\epsilon > 0$ we will only consider partitions $P \supset \Lambda_{\epsilon}$. If $P = \{a = x_0 < x_1 < \cdots < x_n = b\}$ let $S_P = \sum_{i=1}^{n} h(\xi_i) [\alpha(x_i) - \alpha(x_{i-1})]$ where $x_{i-1} < \xi_i < x_i$. For such partitions and for $\epsilon > 0$, there exists *l* depending only on ϵ , *h* and α such that $|S_P - S_{P'}| < \epsilon$ whenever mesh P < l and mesh P' < l.

We use the above integral and some lemmas to show

THEOREM 2. Let θ_j be Fourier multipliers for $L^p(R)$ with multiplier norms M_j . Assume θ_j is normalized at its jumps and has bounded variation locally.

(5)
$$(A(\theta_j)f,g) = \int_{-\infty}^{\infty} \theta_j(\lambda) d(E_\lambda f,g)$$

exists as the limit of the truncated integrals and $|(A(\theta_j)f, g)| \leq M_j ||f||_p ||g||_{p'}$.

(6)
$$(A(\theta_1) \circ A(\theta_2)f, g) = \int_{-\infty}^{\infty} \theta_1(\lambda)\theta_2(\lambda)d(E_{\lambda}f, g)$$

i.e. $A(\theta_1) \circ A(\theta_2) = A(\theta_1 \cdot \theta_2).$

THEOREM 3. Suppose θ is a multiplier for $L^{p}(R)$, and θ_{j} , M_{j} are as

in Theorem 2 and $\theta_j \rightarrow \theta$ pointwise and there exists M such that $|\theta_j(\lambda)| \leq M$, $M_j \leq M$ for all j, λ . Then $(A(\theta_j)f, g) \rightarrow (A(\theta)f, g)$.

THEOREM 4. If ϕ is zero except at $t_1 \cdots t_n \cdots dt_n \sum_{i=1}^{\infty} |\phi(t_i)| < \infty$ then

(7)
$$\int_{-\infty}^{\infty} \phi(\lambda) d(E_{\lambda}f,g) = \sum_{j=1}^{\infty} \phi(t_j) [(E_{t_j}f,g) - (E_{t_j-0}f,g)].$$

These theorems allow us to integrate many multipliers with respect to $(E_{\lambda}f, g)$.

We now construct two complex semigroups. For $y \neq 0$ let

(8)
$$(T_{x,y}^{n}f,g) = \frac{-1}{2\pi i} \int_{-n}^{n} \frac{1}{s+iy} (U_{x-i}f,g) ds - \frac{1}{2} ((E_{0} - E_{-0})f,g).$$

Temporarily let us assume $f \in L^{p}(M) \cap L^{2}(M)$, $g \in L^{p'}(M) \cap L^{2}(M)$ and apply (2) to get

(9)
$$(T_{x,y}^{n}f,g) = \int_{-\infty}^{\infty} \theta_{y}^{n}(\lambda) d(E_{\lambda}f,g) - \frac{1}{2} ((E_{0} - E_{-0})f,g)$$

where

(10)
$$\theta_{y}^{n}(\lambda) = \int_{-n}^{n} e^{2\pi i \lambda s} \frac{1}{s + i y} ds.$$

We see from (8) that $(T_{x,y}^n f, g)$ is a continuous function of $f \in L^p(M)$, $g \in L^{p'}(M)$ for each $x, y, n \ (y \neq 0)$. We show that the right side of (9) is continuous in f and g and has a limit as $n \to \infty$ by showing that $\theta_y^n(\lambda)$ and $\theta_y(\lambda) = \lim \theta_y^n(\lambda)$ satisfy the hypotheses of Theorems 2 and 3. To see this we subtract the truncated (at 1 and n) Hilbert transform from the truncated kernals 1/(s+iy). Thus $(T_{x,y}f, g) = \lim (T_{x,y}^n f, g)$ exists. We show that $T_{x,y} \circ T_{x',y'} = T_{x+x',y+y'}$ and that $T_{x,y}$ is an analytic function of z = x + iy.

 $\operatorname{Im}(E_0-E_{-0})$ is the set of functions h such that $U_sh=h$ for all s. We will assume from now on $f \in \operatorname{Ker}(E_0-E_{-0})$.

There is an equation for $T_{x,y}$ like the equation for $T_{x,y}^{n}$ in (9). From this we show that if y > 0 and $f \in \text{Ker}E_0$, $T_{x,-y}f = 0$ so

(11)
$$T_{x,y}f = T_{x,y}f - T_{x,-y}f = \frac{1}{\pi}\int_{-\infty}^{\infty}\frac{y}{s^2 + y^2}U_{x-e}fds.$$

For y < 0 $T_{x,y}f = 0$.

Similarly for $f \in ImE_0$, (11) holds if y < 0 and $T_{x,y} = 0$ if y > 0.

For y > 0 and $f \in \operatorname{Ker} E_0$ or y < 0 and $f \in \operatorname{Im} E_0$ write $T'_{x,y}f(\xi)$ for the integral at the right in (11) evaluated at $\xi \in M$. Since (11) holds in $L^p(M)$ we have for each $x, y T_{x,y}f(\xi) = T'_{x,y}f(\xi)$ for almost all $\xi \in M$ but the set where $T_{x,y}f(\xi) \neq T'_{x,y}f(\xi)$ depends on (x, y). We show that there is a set $M_f \subset M$ such that measure $(M - M_f) = 0$ and $T'_{x,y}f(\xi)$ converges absolutely for all $\xi \in M_f$ and all $x, y (y \neq 0)$. M_f does not depend on x, y. In Theorems 5 and 6 assume $f \in \operatorname{Ker}(E_0 - E_{-0})$.

THEOREM 5. The maximal function $Sf(\xi) = Sup\{|T'_{x,y}f(\xi)||(x, y) \text{ is } in a \text{ cone not tangent to the line } y=0\}$ is of type (p, p) (1 .

THEOREM 6. For $f \in \text{Im}E_0$, $T'_{x,y}f \rightarrow U_{x_0}f$ as $(x, y) \rightarrow (x_0, 0)$ nontangentially from below.

For $f \in \text{Ker}E_0$, $T'_{x,y}f \rightarrow U_{x_0}f$ as $(x, y) \rightarrow (x_0, 0)$ nontangentially from above.

For $h \in L^{p}(M)$, $T_{x,y}h \rightarrow (E_{0} - E_{-0})h$ as $y \rightarrow \infty$ and x remains in any bounded set. Convergence above is L^{p} convergence, dominated and pointwise convergence on a subset of M having full measure.

The first two pieces of Theorem 6 say that the original group is a sort of direct sum of the two analytic semigroups we constructed.

References

1. A. P. Calderón, Ergodic theory and translation invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353.

2. F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1955.

UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455

1970]