THE CORONA CONJECTURE FOR A CLASS OF INFINITELY CONNECTED DOMAINS

BY M. BEHRENS¹

Communicated by Frederick Gehring, June 30, 1969

1. Statement of results. Let D be a domain obtained from the open unit disk Δ by deleting a sequence of disjoint closed disks Δ_n converging to 0. We assume that the centers c_n and radii r_n of the Δ_n satisfy the following two conditions:

(i)
$$\frac{|c_{n+1}|}{|c_n|} \leq a < 1$$
 for all $n \geq 1$, and

(ii)
$$\sum_{n=1}^{\infty} \frac{r_n}{|c_n|} < \infty.$$

Let $H^{\infty}(D)$ be the uniform algebra of bounded analytic functions on D and let $\mathfrak{M}(H^{\infty}(D))$ be the maximal ideal space of $H^{\infty}(D)$. The Gleason parts of $H^{\infty}(D)$ are the equivalence classes in $\mathfrak{M}(H^{\infty}(D))$ defined by the relation $\|\phi - \psi\| < 2$, where $\|\cdot\|$ is the norm in the dual of $H^{\infty}(D)$.

With the above assumptions on D we have the following results.

THEOREM 1. D is dense in the maximal ideal space of $H^{\infty}(D)$.

THEOREM 2. The Gleason parts of $H^{\infty}(D)$ are all one-point parts or analytic disks, with the exception of the part containing D.

The set of homomorphisms ϕ of $H^{\infty}(D)$ for which $\phi(z) = 0$, where z is the coordinate function on D, is called the "fiber over 0," and is designated by \mathfrak{M}_0 . \mathfrak{M}_0 contains the "distinguished homomorphism" ϕ_0 defined by

$$\phi_0(f) = \frac{1}{2\pi i} \int_{bD} \frac{f(z)dz}{z} \cdot$$

If z tends to zero in such a way that

$$\lim_{N\to\infty}\left(\lim_{z\to0}\inf_{n\geq N}\frac{|z-c_n|}{r_n}\right)=\infty$$

then f(z) tends to $\phi_0(f)$ for all $f \in H^{\infty}(D)$, that is, z tends to ϕ_0 in $\mathfrak{M}(H^{\infty}(D))$. ϕ_0 is in the same Gleason part as D (cf. [5]).

¹ The preparation of this paper was supported in part by NSF Grant No. GP-7710.

THEOREM 3. The Gleason part containing D is the union of D and a subset E of the fiber over zero. The set E is homeomorphic to the quotient space obtained from $\tilde{\beta}(N) \times \Delta$ by identifying $\tilde{\beta}(N) \times \{0\}$ to the point ϕ_0 . Each of the functions in $H^{\infty}(D)$ is analytic on each slice of $\tilde{\beta}(N) \times \Delta$.

The remainder of this note will be devoted to indicating how these theorems are proved, and how they can be extended to more general domains.

2. The algebra $H^{\infty}(\Delta \times N)$. The algebra $H^{\infty}(\Delta \times N)$ of bounded functions on $\Delta \times N$ which are analytic on each slice $\Delta \times \{n\}$ becomes a Banach algebra, when endowed with the supremum norm.

LEMMA 1. $\Delta \times N$ is dense in the maximal ideal space $\mathfrak{M}(H^{\infty}(\Delta \times N))$ of $H^{\infty}(\Delta \times N)$.

PROOF. Suppose $f_1, \dots, f_n \in H^{\infty}(\Delta \times N)$ satisfy $|f_1| + \dots + |f_n| \ge \delta > 0$ on $\Delta \times N$. We must find $g_1, \dots, g_n \in H^{\infty}(\Delta \times N)$ satisfying $\sum f_j g_j = 1$. By Carleson's solution of the corona conjecture for the unit disc Δ , there are functions $g_{1m}, \dots, g_{nm} \in H^{\infty}(\Delta \times \{m\})$, such that $\sum_{j=1}^n f_j g_{jm} = 1$ on $\Delta \times \{m\}$, and such that $|g_{jm}| \le M$, where M depends only on δ . The g_{jm} then determine functions $g_j \in H^{\infty}(\Delta \times N)$ which do the trick.

Now $H^{\infty}(\Delta)$ can be considered a subalgebra of C(Y), where Y is the maximal ideal space of $L^{\infty}(b\Delta, d\theta)$. In fact, $H^{\infty}(\Delta)$ is a strongly logmodular algebra on Y, in the sense that every $u \in C_R(Y)$ is equal to log |f|, for some $f \in H^{\infty}(\Delta)$. Regarding $H^{\infty}(\Delta \times \{m\})$ as a subalgebra of $C(Y \times \{m\})$, we see that $H^{\infty}(\Delta \times N)$ becomes an algebra on the Čech compactification $\beta(Y \times N)$ of $Y \times N$.

LEMMA 2. $H^{\infty}(\Delta \times N)$ is a strongly logmodular algebra on $\beta(Y \times N)$.

PROOF. Let $u \in C_R(\beta(Y \times N))$, and let u_m be the restriction of u to $Y \times \{m\}$. There is $f_m \in H^{\infty}(\Delta \times \{m\})$ such that $\log |f_m| = u_m$, regarded as functions on $Y \times \{m\}$. The f_m determine a function $f \in H^{\infty}(\Delta \times N)$ such that $\log |f| = u$ on $Y \times N$, and hence on $\beta(Y \times N)$. That does it.

Now consider the function $Z \in H^{\infty}(\Delta \times N)$, defined by $Z(\lambda, n) = \lambda$. Then ||Z|| = 1. The Gelfand transform of Z will be denoted by \hat{Z} .

LEMMA 3. The subset of $\mathfrak{M}(H^{\infty}(\Delta \times N))$ on which $|\hat{Z}| < 1$ is homeomorphic to $\Delta \times \beta(N)$.

PROOF. To each pair $(\lambda, p) \in \Delta \times \beta(N)$ corresponds the homo-

388

morphism of $H^{\infty}(\Delta \times N)$ which assigns to $f = \{f_j\}_{j=1}^{\infty} \subset H^{\infty}(\Delta \times N)$ the value of the bounded sequence $\{f_j(\lambda)\}_{j=1}^{\infty}$ at p. This correspondence is easily seen to be the desired homeomorphism.

Now the closure of each $\Delta \times \{m\}$ is an open subset of $\mathfrak{M}(H^{\infty}(\Delta \times N))$. Let X be the space obtained from $\mathfrak{M}(H^{\infty}(\Delta \times N))$ by deleting the closures of the $\Delta \times \{m\}$, $m \ge 1$, and by identifying $\hat{Z}^{-1}(0)$ to a point. Let A be the subalgebra of C(X) obtained by restricting to X the functions in $H^{\infty}(\Delta \times N)$ which are constant on $\hat{Z}^{-1}(0)$. In other words, A is the linear span of $ZH^{\infty}(\Delta \times N)$ and the constants, regarded as continuous functions on X.

LEMMA 4. A is a uniform algebra on X, whose maximal ideal space is X. The set $E \subseteq X$ on which $|\hat{Z}| < 1$ is homeomorphic to $\Delta \times \tilde{\beta}(N)$, with $\{0\} \times \tilde{\beta}(N)$ identified to a point. It forms a Gleason part of A. The remaining Gleason parts of A are either points or analytic disks.

PROOF. This lemma is easy to verify. The statement concerning the Gleason parts follows from the logmodularity of $H^{\infty}(\Delta \times N)$, and the embedding theorem for analytic disks (cf. [3]).

Note that E is not dense in X. In fact, the function $f \in H^{\infty}(\Delta \times N)$, defined by $f(z, n) = z^n$, vanishes identically on E, while |f| = 1 on $\beta(Y \times N)$, and hence on the Shilov boundary $\tilde{\beta}(Y \times N)$ of A.

3. The isomorphism of the fiber and the fringe. The pairwise disjoint sequence of disks D_n^c with centers c_n and radii $((1-a)/2)c_n$ have the property that every $f \in H^{\infty}(\Delta_n^c)$ for which $||f|| \leq 1$ satisfies $|f| \leq (2/(1-a)) r_n/|c_n|$ in D_n . This, together with condition (ii), gives

LEMMA 5. If $\epsilon > 0$ and M > 0 are given, then there exists an integer Q such that: If $f_n \in H^{\infty}(\Delta_n^c)$, $f_n(\infty) = 0$, and $||f_n|| \leq M$, then

$$\sum \left\{ \left| f_m(z) \right| : m \ge Q \right\} < \epsilon \quad \text{if } z \notin \bigcup \left\{ D_n : n \ge Q \right\},$$
$$\sum \left\{ \left| f_m(z) \right| : m \ge Q, m \neq n \right\} < \epsilon \quad \text{if } z \in D_n.$$

In particular, $\sum f_n$ converges uniformly on compact subsets of D to a function $f \in H^{\infty}(D)$.

For $f \in H^{\infty}(D)$ define

$$(P_n f)(z) = \frac{1}{2\pi i} \int_{\partial \Delta_n} \frac{f(\xi) d\xi}{\xi - z}, \qquad z \in \Delta_n^C.$$

Then P_n is a projection of $H^{\infty}(D)$ onto the functions in $H^{\infty}(\Delta_n^{\circ})$ which vanish at ∞ . Moreover $P_j P_k = 0$ if $j \neq k$ and $\sup_n ||P_n|| < \infty$. If $\{f_n\}$ is

1970]

as in Lemma 5, then $P_n(\sum f_m) = f_n$. Applying Lemma 5 to $\{P_n f\}$, we have that $\sum P_n f$ converges uniformly on compact subsets of D to f and $f(z) \rightarrow \phi_0(f)$ as $z \rightarrow 0$, $z \in D \setminus \bigcup D_n$. Further,

LEMMA 6. Given $\epsilon > 0$, there is a Q such that for all $f \in H^{\infty}(D)$ $|f(z) - (P_n f)(z) - \phi_0(f)| < \epsilon$ for $n \ge Q$ and $z \in D_n \setminus \Delta_n$.

Let $L_n(z) = r_n/(z-c_n)$, and define

$$\Psi(f)(z, n) = (P_n f)(L_n^{-1}(z)) + \phi_0(f), \qquad f \in H^{\infty}(D).$$

Then Ψ is a continuous linear isomorphism of $H^{\infty}(D)$ and those functions in $H^{\infty}(\Delta \times N)$ which are constant on $\hat{Z}^{-1}(0)$. Moreover, if $f \in H^{\infty}(D)$ vanishes on the fiber over 0, then $\Psi(f)$ vanishes on the "fringe"

$$\mathfrak{M}(H^{\infty}(\Delta \times N)) \frown \left(\bigcup_{n=1}^{\infty} \overline{\Delta \times \{n\}} \right).$$

Hence Ψ determines a continuous linear operator Θ from $H^{\infty} | \mathfrak{M}_{\mathfrak{g}}$ to the algebra A defined in Lemma 4.

LEMMA 7. The map Θ from $H^{\infty}(D) \mid \mathfrak{M}_{0}$ to A is an isometric (algebra) isomorphism.

PROOF. By Lemma 6, there is a Q for which

$$|P_{n}(fg) + \phi_{0}(fg) - (P_{n}f + \phi_{0}(f))(P_{n}g + \phi_{0}(g))| < \epsilon$$

if $n \ge Q$ and $z \in D_n \setminus \Delta_n$. Composing with L_n^{-1} and using the maximum modulus principle in Δ we have that

$$|\Psi(fg)(z, n) - \Psi(f)(z, n)\Psi(g)(z, n)| < \epsilon$$

for large *n*, and hence that Θ is multiplicative. That Θ is isometric follows easily from Lemma 6, the fact that $f(z) \rightarrow \phi_0(f)$ as $z \rightarrow 0$, $z \in D \setminus \bigcup D_n$, and the fact [5] that $||f||_{\mathfrak{M}_0} = \limsup_{D \ni z \rightarrow 0} |f(z)|$ for all $f \in H^{\infty}(D)$. As was noted after Lemma 5, $P_n(\sum f_m) = f_n$, so that the image of Ψ covers $ZH^{\infty}(\Delta \times N)$ and hence Θ is onto A.

PROOF OF THEOREM 1. Let ϕ be a homomorphism of $H^{\infty}(D)$. If ϕ is not in the fiber at 0 then Carleson's corona theorem can be used to show that ϕ is in the closure of D. Also, ϕ_0 is the closure of D. Assume that $\phi \neq \phi_0$ is in the fiber over 0. By Lemma 7, ϕ defines a homomorphism of A and hence a homomorphism ϕ of $H^{\infty}(\Delta \times N)$. ϕ is characterized by the fact that $\phi(\Psi(f)) = \phi(f)$ for all $f \in H^{\infty}(D)$. Recall that $Z \in H^{\infty}(\Delta \times N)$ is the function defined by $Z(\lambda, n) = \lambda$. For $p \in N$,

390

define $I_p \in H^{\infty}(\Delta \times N)$ by setting $I_p(\lambda, n) = 1$ if $n \ge p$, and $I_p(\lambda, n) = 0$ if n < p. $\tilde{\phi}$ will satisfy $\tilde{\phi}(Z) \ne 0$ and, for each $p \in N$, $\tilde{\phi}(I_p) = 1$.

Let $f_1, \dots, f_k \in H^{\infty}(D)$ and $0 < \epsilon < |\tilde{\phi}(Z)|/2$ be given. We will show there is a point $z \in D$ for which $|f_i(z) - \phi(f_i)| < 2\epsilon$ for $i = 1, \dots, k$. Let $p \in N$. By the density of $\Delta \times N$ in $\mathfrak{M}(H^{\infty}(\Delta \times N))$ there is a $(\lambda, n) \in \Delta \times N$ with $|\Psi(f_i)(\lambda, n) - \tilde{\phi}(\Psi(f_i))| < \epsilon$ for $1 \le i \le k$, $|Z(\lambda, n) - \tilde{\phi}(Z)| < \epsilon$ and, $|I_p(\lambda, n) - \tilde{\phi}(I_p)| < \epsilon$. In particular, $|\lambda| > |\tilde{\phi}(Z)|/2$, and $n \ge p$. If p was chosen sufficiently large, the last two inequalities guarantee that $L_n^{-1}(\lambda) \in D_n \setminus \Delta_n$. Hence, if p is also larger than the Qof Lemma 6, then $L_n^{-1}(\lambda) \in D$ and

$$|f_i(L_n^{-1}(\lambda)) - \phi(f_i)|$$

= $|f_i(L_n^{-1}(\lambda)) - (P_n f_i)(L_n^{-1}(\lambda)) - \phi_0(f_i) + \Psi(f_i)(\lambda, n) - \tilde{\phi}(\Psi(f_i))|$
 $\leq 2\epsilon \quad \text{for } i = 1, \cdots, k.$

4. Results for more general domains. These same techniques can be used to prove the following corona theorem.

THEOREM. Let E be a domain for which E is dense in $\mathfrak{M}(H^{\infty}(E))$. Let D be a domain obtained from E by excising a sequence of disjoint closed disks $\Delta(c_n; r_n)$, which satisfy the following conditions:

(i) There exists a disjoint sequence of disks $\Delta(c_n; s_n)$ contained in E with $\sum r_n/s_n < \infty$,

(ii) \overline{bE} contains all the limit points of $\{c_n\}$. Then D is dense in $\mathfrak{M}(H^{\infty}(D))$.

Note that this theorem includes Theorem 1 by taking $E = \Delta \setminus \{0\}$. The proof involves describing the maximal ideal spaces of the fibers of $H^{\infty}(D)$ over ∂D . These fibers become immensely more complicated, though, in the general case, than in the simple case we have described.

References

1. L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. MR 25 #5186.

2. T. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969.

3. K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271–317. MR 26 #6820.

4. ——, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 24 #A2844.

5. L. Zalcman, Bounded analytic functions on domains of infinite connecticity, Trans. Amer. Math. Soc. 144 (1969), 241-269.

UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024