
HARMONIC ANALYSIS ON SEMISIMPLE LIE GROUPS 

BY HARISH-CHANDRA 

1. Introduction. Let G be a locally compact group which we assume 
to be separable and unimodular. Let dx denote the Haar measure on 
G. If T is a unitary representation of G on a Hubert space § and 
/ E L i ( G ) , we write 

T(f) ^ I f(%)7r(x)dx. 
J o 

Then ir(J) is a bounded operator on & and 

*(J* g)~ *&*(£) if, g Ç. LAG)), 

where ƒ * g denotes the convolution of ƒ and g. 
Let A be a bounded linear operator on ^p. We say that A is of the 

trace class if the series 

S I (*«, A*i) I 
i 

converges for every orthonormal base {^i}iej of § . Moreover if this 
is so, we define 

tr A = £ (fc, 4fc). 

Then tr 4̂ is actually independent of the choice of this base. 
Let VT denote the set of a l l /G^ i (G) such that ir(f) is of the trace 

class. Then Vr is a linear subspace of Li(G). Put 

0 . ( / ) = tr *•(ƒ) ( f £ F T ) . 

Then ®T is a linear function on VT which we may call the character 
of 7T. Of course this concept would be useful only when the space V* 
is fairly large. 

Let 8(G) denote the set of all equivalence classes of irreducible 
unitary representations of G. It is easy to see that for any representa­
tion x, VT and ©^ depend only on the class co of 7r. Hence we may de-
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note them by Vw and ©w respectively. Put 

F o = PI V„. 
cöeS(ö) 

For any function /G£ i (G) and xGG, define the function fx by 
fx(y) ^fix^yx). I t is clear that fxE: V0 whenever ƒ G V0 and therefore 
the group G operates on F0. Now, in order to describe the main prob­
lem of harmonic analysis, we have to fix a certain topological vector 
space V satisfying the following conditions:1 

(1) F C F 0 n C ( G ) , where C(G) is the space of all complex-valued 
continuous functions on G. 

(2) V is stable under G and every xE:G defines a continuous endo-
morphism of V. 

(3) For any co£8(G), the restriction of ©*, on F is a continuous 
linear function on V, which determines œ uniquely. 

For any / G F , define /(co) =;©„(ƒ) (coGS(G)). Then ƒ is a complex-
valued function on 8(G), which may be regarded as the Fourier trans­
form of ƒ. Let us agree to call a continuous linear function on F, a 
distribution. For any distribution T and xÇzG, define the distribution 
Tx by Tx(f) = T(f*~l) (fE F). We say that T is invariant if Tx = T for 
all xEG. 

The central question in harmonic analysis may now be formulated 
as follows. Given an invariant distribution T on G, how to express 
it as a Hinear combination" of the characters ©„ (coGS(G))? In fact, 
to every such T, we would like to associate a "distribution" t 
on &(G) in such a way that T(f) = f(J) for all ƒ G F. (Here by a 
"distribution" on 8(G), we mean some sort of linear functional on 
a suitable space of functions on 8(G).) If 3 is the Dirac measure, so 
that §(ƒ) = / ( l ) (/G F) , the determination of $ is just the problem of 
the explicit Plancherel formula for G. 

For an arbitrary G, our understanding of &(G) is still very rudi­
mentary (see [5]) and therefore no serious at tempt to attack the 
above problem can yet be contemplated. However the situation for 
real semisimple (or reductive) Lie groups seems rather encouraging 
[4(a), (d)] and there is reason to hope that some substantial results 
on reductive p-adic groups may be attainable within a few years. 
Therefore I shall limit myself to these two cases in these lectures. The 
other extreme case, when G is a nilpotent or solvable Lie group, has 
been studied extensively by Dixmier, Kirillov, Moore, and Pukânszky 
(see [6], [7]). 

1 We do not claim here that such a space V necessarily exists. Of course the 
crucial condition is (3). 
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Our entire approach to harmonic analysis on reductive groups is 
based on the philosophy of cusp forms (see [2] and [4(c), (d)]) and 
the success of this method depends on a good knowledge of the dis­
crete series (see §3) for such groups. In the case of real groups the 
characters of the discrete series are all known (see Theorem 8) and 
therefore the theory works reasonably well. But for p-adic groups our 
understanding of the supercuspidal representations (§14) is still very 
poor. Nevertheless the resemblance between the two cases is so strik­
ing that one cannot give up the hope that the same philosophy would 
eventually work in both cases. 

2. Characters in the real case. Suppose G is a real, connected, 
semisimple Lie group with finite center. Fix a maximal compact 
subgroup K of G. If w £î S (G) and bÇE&(K), we define [co:b] as follows. 
Fix a representation 7r£a> and let TTK denote the restriction of IT on K. 
Then [co:b] is the multiplicity of b in ITK> Since K is compact, every 
irreducible representation of K is finite-dimensional. We denote by 
d(b) the degree of a representation in the class b. 

THEOREM 1. There exists an integer N^l such that 

[œ:b]S Nd(b) 

for all coGS(G) and bE&(K). 

Let Cc°° (G) denote the space of all complex-valued C00 functions on 
G with compact support, taken with its usual topology [9]. The 
following result is an easy consequence of Theorem 1. 

THEOREM 2. Let TT be an irreducible unitary representation of G. Then 
for any /GGC°°(G), ir(f) is of the trace class. Put 

©*(ƒ) = trx(/) (feC?(&). 

Then ®r is a distribution on G in the sense of Schwartz [9]. 

As we have seen in §1, 0*. depends only on the class œ of 7r. Hence 
we may denote it by ©w. 

THEOREM 3. Let coi, C02 be two elements in 8(G). Then ©W1 = ©w, if and 
only if coi = co2. 

This shows that if we take V= GC°°(G), then all the conditions of §1 
are fulfilled. 

Let u be a differential operator on G. Then its adjoint u* is the 
differential operator given by the relation 

f u*f- gdx = f / ugdx a, g e er (G)). 
J Q J Q 
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If T is a distribution on G, the mapping 

f-^T(u*f) ( /ec-(0), 
is also a distribution which we denote by uT. Let F be a locally 
summable function on G. Put 

TP(f)=f Ffdx ( feCf(G)) . 

Then TV is a distribution on G. We say that T~ F if T = T F . 
Let 3 be the algebra of all differential operators on G which com­

mute with both left and right translations of G. Then $ is abelian. 
A distribution T is called 3" n n i t e if the space of all distributions of 
the form zT (sGB) has finite dimension. Moreover T is said to be an 
eigendistribution of ,3, if this space has dimension ^ 1 . Finally we 
say that T is i£-finite, if the left and right translates of T by elements 
of K, span a finite-dimensional space. 

Fix an indeterminate t and let / = rank G. For any # £ G , let D(x) 
denote the coefficient of tl in the polynomial d e t ( / + l — Ad(#)). Then 
D is an analytic function on G which is not identically zero. A point 
xÇzG is called regular if D(x) T^O. Let G' denote the set of all regular 
points of G. Then G' is an open dense subset of G whose complement 
is of measure zero. 

THEOREM 4. Let © be an invariant and ^-finite distribution on G. 
Then there exists an analytic function F on G' such that F is locally 
summable on G and © = F. 

Fix co£S(G) and let ©„ denote, as before, the character of co. I t is 
easy to see that @w is an invariant eigendistribution of £. Therefore 
it follows from Theorem 4 that @w is a function. 

3. The discrete series. We return to the assumptions of §1. Let 
7T be an irreducible unitary representation of G on a Hubert space § . 
We say that ir is of type LP (p^l), if there exist nonzero elements 
<t>, ^AG§ such that 

f | (*, *(*)*) \*d% < oo. 
J Q 

In case T is of type L2 (or, as we sometimes say, square-integrable), 
there exists a positive number d{ir) such that2 

2 conj c (cGC) denotes the complex conjugate of c. 
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ƒ (<2>i, TT(^)^I) -conj(02 , w(x)j/2)dx = d(v)"l(<l>u $a) -conjC^i, ^2) 
G 

for all <j)iy ^ * £ § (* = 1, 2) (see [3] and [5, p. 640]). These are called 
the Schur orthogonality relations for TT and d(w) the formal degree of 
7T. Let SP(G) denote the set of all classes co G 8(G) which contain repre­
sentations of type Lp. If co£82(G), we put dip)) = d(ir) for 7r£w. The 
set 82(G) is called the discrete series for G. 

Now suppose K is an open and compact subgroup of G. Normalize 
dx in such a way that the total measure of K is 1. For any co£8(G) 
and bEi&iK), let [colb] denote, as before (see §2), the multiplicity of 
b in co and d(b) the degree of b. 

THEOREM 5. Fix b £ S ( i Q . Then 

d(b) è E d(œ)[œ:b]. 
*>es2((7) 

This is a simple consequence of the Schur orthogonality relations. 

COROLLARY. Fixco£82(G). Then 

[a>: b] ^ d(o))-^(b) 

for all bG&(K). 

4. Characters of the discrete series (real case). Define G as in §2. 

THEOREM 6. Z2{G)9^0 if and only if G has a compact Cartan sub­
group. 

Let us now assume that G has a compact Cartan subgroup B. Then 
any two such Cartan subgroups are conjugate in G. Let Q be the Lie 
algebra of G and gc its complexification. Let Gc be the simply con­
nected complex-analytic group corresponding to g0. For simplicity 
we assume that G is the real analytic subgroup of Ge corresponding 
tog . 

Let b be the Lie algebra of B and b* the dual of b. Fix some order 
on the real vector space ( — l)1/2b*. Let W= W($/h) denote the Weyl 
group of3 (gc, bc) and J3* the character group of B. Then W operates 
on b and B and therefore by duality, it also operates on b* and 5 * . 
Let (&*, b) (&*£J3*, bÇzB) denote the value of the character &* at 6. 
Then we have the relations 

* For any finite-dimensional vector space V over R, we denote by V* its dual and 
by Ve its complexification. Moreover F«* = (F*)Ö. 
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(exp H)' = exp(s#), (b*', b) = (b*, b''1) 

for H& and sEW. 
Put 

Cf = I I ^ « 
aEP 

where P is the set of all positive roots of (g, b) and Ha the element in 
fcc, which is dual to a under the Killing form so that 

a(H) = tr(ad H- ad #«) ( # £ 6). 

Then ö is a polynomial function on bc* and ös = e(s)a (sE:W) where 
€(5) = 1 or — 1. Moreover there exists an analytic function A on B such 
that 

A(exp E) = J ! (ea ( H ) / 2 - e-«w*) (HG b). 
0 6 P 

For any &*£!?*, let log 5* denote the element X£(--l)1 / 2 t>* such that 

(b*, exp #> = ex<m ( F £ 6 ) , 

and put 

o(&*) =a(log&*) ( & * £ £ * ) . 

We say that 6* is regular if ©(&*) 5^0. 
Let B be the normalizer of B in G. Then W(G/B) = £ / £ may be 

regarded as a subgroup of W. 

THEOREM 7. JFMC &*££*. Then there exists an invariant eigendistribu-
tion ® of £ on G such that* 

(1) supxEG' |P(x) | 1 / 2 | e (x ) |<«>, 
(2) @=A~1X)«€TT(G/J5) e(s)&** pointwise on BC\G'. 
Moreover © is unique if ®(b*) 5*0. 

Let 5 * ' be the set of all regular elements in J3* and for any &*£J3*', 
let ©6* denote the corresponding distribution of Theorem 7. Put 
c(6*)=sign o(&*) and g = | d im G/2L 

THEOREM 8. Gwew &*££*' , Jftere exists a unique class co(&*)£82(G) 
such that 

(-1) MW&* 

is tóe character of co(6*). r&e mapping b*—>o)(b*) from B*' to 82(G) is 
4 Here we have to keep in mind Theorem 4. 
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surjective. Moreover co(ft*) = o>(ft2*) if and only if 6*, ft2* are conjugate 
under W(G/B). 

Let a be an automorphism of G such that aB = B. Then a also oper­
ates on B* by the relation 

<<rft*, ft) = (6*, cr-^) (ft* G £*, ft G 5) . 

Define e(o-) = ± 1 by the rule fö* = e(or)ö. Also if T is a distribution on 
G, we define the distribution Tff by 

!*(ƒ) = T(J') ( / G C ? ( G ) ) , 

where ƒ'(#) —f{ax) (#£(•?)• 

LEMMA 1. Le/ or fte aw automorphism of G such that aB = 13. TT^n 

(©&*)* = €((7)0,6* (ft* G 5 * ' ) . 

Actually it is possible to define ©&* for all b*(EB* in such a way that 
both Theorem 7 and Lemma 1 hold for all a. 

5. Parabolic subgroups. Let G be as in §2. By a parabolic subgroup 
(psgp) P of G, we mean a closed subgroup of G with the following two 
properties. 

(1) If p is the Lie algebra of P , then pc contains a Borel subalgebra 
(i.e. a maximal solvable subalgebra) of gc. 

(2) P is the normalizer of p in G. 
By the radical N of P , we mean the maximal normal subgroup of P 
such that Ad(n) is unipotent for every nÇzN. An abelian subgroup A 
of G is said to split if, for every aÇzA, Ad (a) can be diagonalized over 
R. Fix i£ as in §2 and let 0 denote the Cartan involution of G corre­
sponding to K. Put Mi = PP\0(P) and let A be a maximal connected 
split abelian subgroup lying in the center of Mi. Then A is unique and 
Mi is the centralizer of A in G. Let X(Mi) denote the group of all 
continuous homomorphisms of Mi into the multiplicative group Rx 

of real numbers. Put 

M = fi ker | x | , 

where | %| 0») = | x(™) I (wGAfi). Then Mi = M 4 , P = MAN and the 
corresponding mapping oî MXAXN into P is a diffeomorphism. We 
call this the Langlands decomposition of P and A the split component 
of P . Let a be the Lie algebra of A. Then the exponential mapping 
defines a bijection of a on A and we denote its inverse by log. By the 
parabolic rank of P we mean the dimension of A and denote it by 
p r k P . 
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The group M is, in general, neither connected nor semisimple. 
However it is always reductive. We say that the psgp P is cuspidal 
if M has a compact Cartan subgroup. 

Let ^ be a Cartan subalgebra of $. We denote by §R the set of all 
points in \) where every root of ($, I)) takes a real value. 

LEMMA 2. A psgp P = MAN is cuspidal if and only if there exists a 
Ostable Cartan subalgebra I) of g such that a = ^ . 

Let P = MAN be a prgp of G. Then G = KP. Hence every element 
x G G c a n be written in the form x = kman (fe£i£, m G M , aÇzA, nÇzN). 
The element a is uniquely determined and we put Hp(x) ==log a. Let 
a* be the dual of a and n the Lie algebra of N. Then we define ppGct* 
by 

pP(H) = § t r ( a d # ) „ ( H G a), 

where (ad 27) « denotes the restriction of ad iT on n. By a root of 
(P, ^4) (or P ) we mean an element a Get* with the following property. 
There should exist an element XT^O in n such that [H, X] =a(H)X 
for all H G ft. Let ct+ be the set of all jfiTGct such that a(H) ^ 0 for every 
root a of (P, A), We put 4 + = exp ct+. 

Two psgps Pi , Pi are said to be associated if their split components 
Ai, A% are conjugate under G (or equivalently under K). 

A psgp P is called minimal if it is minimal among all psgps of G. 
The following three conditions are mutually equivalent. 

(1) P = MAN is a minimal psgp. 
(2) MQK. 
(3) prk P = rank G/i£. 

Any two minimal psgps are conjugate under K. 

6. The functions S and cr. Fix a minimal psgp P = MA N of G. 
Then G = KAN and this is an Iwasawa decomposition of G. Put 

E(*) = f e-fiW(xk))dk (x G G) 

where H(x) = Hp(x), p=pp and the Haar measure dk on K is so nor­
malized that the total measure of K is 1. 

Define a norm on g by setting 

||X||2 = - tr(ad X ad 6(X)) (X G B). 

Then since G = KAK, there exists a unique function or on G such that 
(1) <r(kixk2)=<r(x) (ki, k2ÇîK, xGG), 
(2) cr(exp flHN ( ^ G a ) . 
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The functions S and a are both independent of the choice of P and 
they have the following remarkable properties. 

(1) fBB(pcky)dk=E(x)E(y) (*, yEG). 
(2) There exist numbers c, d*zQ such that 

1 ^ E(ay ( 1°« o ) S c(l + <r(a))d (a E A+). 

(3) We can choose r 0 ^ 0 such that 

f SW2(l + ^W)"rtó < oo. 
J G 

(4) There exists a number r ^ O such that5 

f | £><» |"l/2H(*)(l + *(%))-*d% < » . 

Let q be any linear subspace of g. Then we denote by dc\ the 
Euclidean measure on q corresponding to the above Euclidean norm 
on g. I t is convenient to normalize the Haar measure dx on G as 
follows. Let da and dn denote the Haar measures on A and N which 
corespond to da and dn respectively under the exponential mapping. 
Then if x — kan (kEK, aEA, nEN), 

dx = e2^lo^a)dkdadn 

where dk is the normalized Haar measure of K. This normalization 
of dx is independent of the choice of the minimal psgp P . 

7. The Schwartz space and the cusp forms. Let £> be the algebra 
of all differential operators on G. Let 3D* and SDr denote the subalgebras 
consisting of those DE& which commute with the left and right 
translations of G respectively. Let S)0 be the subalgebra of 3D gener­
ated by 3DjU3Dr. 

For jf£C°°(G), DE$>o and r ^ O , put 

VDA/) = svp \Df\ (1 + *YB-K 
G 

Let 6(G) denote the space of all ƒ E C°°(G) such that vDtr(f)<«> for 
all DE$>Q and r ^ O . We topologize 6(G) by means of the set of semi-
norms VD,T (DE&o, r^O). Then 6(G) is a Hausdorff, locally convex 
and complete space and we call it the Schwartz space of G. We list 
here some of the properties of this space. 

(1) The inclusion mapping of CC°°(G) into 6(G) is continuous and 
the image is dense in 6(G). 

6 Here D has the same meaning as in §2, 
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(2) e(G)CU(G). 
(3) 6(G) is closed under convolution and the mapping (ƒ, g) 

~-*f * £ (ƒ> £ G ®(G)) is continuous. 
For ƒ G 6(G) and P = MAN a psgp of G, define 

/P(S) = f f(xn)dn (x G G) 

where dn is the Haar measure on N. (This integral always exists.) 
We say that ƒ is a cusp form if fp = 0 for every psgp PT^G. Let ° 6(G) 
denote the space of all cusp forms on G. Then °C(G) is a closed sub-
space of 6(G). 

THEOREM 9. Every K-finite and Q-finite f unction in L^G) is a cusp 
form. Conversely K-finite eigenfunctions of S in 6(G) span a dense 
sub space of°(S(G). 

Combining this with Theorem 6 we get the following result. 

COROLLARY. °6(G) T* {o} if and only if rank G = rank K. 

Let T be a unitary double representation of K on a finite-
dimensional Hubert space V. We denote by 6(G, r ) the space of all 
f G e(G) ® F such that ƒ(***,) =r(èi)/(x)r(fe2) (&, faG-K, * £ G ) . Put 

°6(G,r) = C(G,r) H (°6(G) ® F). 

THEOREM 10. dim °e(G, r ) < oo. 

Fix a psgp P = MAN of G. Then I f is a reductive group with 
finitely many connected components. Moreover KM — KC\M is a 
maximal compact subgroup of M. Let TJK- denote the restriction of r 
on KM. Then it is not difficult to define the spaces 6(M), °6(M) and 
°6(M", TM) in the same way as above. 

L e t / G 6(G). Then we w r i t e / p ~ 0 if 

J conj <j)(tn) 'fp(xm)dm = 0 
M 

for all x&G and <£G°6(.M). (Here dm is the Haar measure on M and 
the integral always exists.) 

THEOREM 11. Let ƒ 6e aw element in 6(G) swcfe that fp~0 for all 
cuspidal subgroups P of G. Then f = 0. 

Let ï); ( l ^ i ^ r ) be a complete set of 0-stable Cartan subalgebras 
of 8, no two of which are conjugate under G. Put a,-= §*-,# and -4» = 
exp at. Let <3»(G) denote the set of all / G 6 ( G ) with the following 
property. 
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If P = MAN is any cuspidal subgroup of G, then fp~0 unless A is 
conjugate to Ai under K. Then 6,(G) is a closed subspace of 6(G). 

THEOREM 12. 6(G) = ^2i£i$r @»(G) where the sum is direct and 
smooth. 

Let Ei denote the projection of 6(G) on 6i(G) corresponding to 
the above direct sum. Then smoothness means that Ei are continuous 
endomorphisms of 6(G). Let ^)* denote the closure of 6»(G) in 
§=Z,2(G). Then § is the orthogonal sum of $£>i (l^i^r) and E{f 
( /G6(G)) is, actually, the orthogonal projection of ƒ in &i. 

A distribution T on G is called tempered if it extends to a con­
tinuous linear function on Q(G). 

LEMMA 3. Let © be an invariant and ^-finite distribution on G. 
Then @ is tempered if and only if we can choose c, r ̂  0 such that*'5 

| D ( * ) | 1 / f | Ö ( * ) | g c(l + <r(*))r 

for all # £ G ' . 

COROLLARY. Suppose 0 is tempered in the above lemma. Then 

©(ƒ) = f f.Qdx 

for f G 6(G). 

This follows immediately from (4) of §6. We write 

(®, ƒ) = f conj ®-fdx (ƒ £ e(G)). 

Let ƒ be a continuous function on G. We say that ƒ satisfies the 
weak inequality if there exist numbers c, r ^ O such that 

| / ( * ) | S <ffl(*)(l + *(*))' 

for all x £ G . 

LEMMA 4. !,£/ T be a tempered distribution on G which is both K-
finite and ^-finite. Then T satisfies the weak inequality. 

Here we have to observe that a infinite and 3-finite distribution 
is necessarily an analytic function. 

8. The projection of 6(G) on °6(G). We now return to the assump­
tions and notation of §4. Put B' = B(~\G' and 

Ff(b) = A(b) f f(xbx~l)dx (b G # 0 
JG 
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for / G 6(G). This integral is always convergent and F/ is a C°° func­
tion on B'. 

THEOREM 13. Let f'G° 6(G). r&ew i<> extends to a C00 f unction on B 
and 

F,(J>) - E (©>•,/)<**, *) (* e 5). 

Now 

a>0 

may be regarded as a differential operator on B. Then, for any 
ƒ G 6(G), CÖ F f extends to a continuous function B. 

LEMMA 5. There exists a number CQ>0 such that 

öF,(l) « ( - l ) ' c 0 / ( l ) 

for allf&e(G). 

I t is possible to determine CQ explicitly as follows. Let Ï be the Lie 
algebra of K. We assume, as we may, that ÎDh. Let F be the set of 
all positive roots of (g, b) and P* the subset of those « G P which can 
be regarded as roots of (Ï, b). Put 

1 
e?* = n Ha) pk = — 2 J « 

aePk 2 aePjfc 

and normalize the measure dx as in §6. 

LEMMA 6. With the above normalization of the Haar measure of G, 
we have* 

CG= [W(G/B)]{2<iry2"l*txk(Pk) 

where 

n « dim(G/iO - rank(G/Z). 

THEOREM 14. For <wy/G6(G) and &*G#*, define 

ƒ*•(*) = (~1) W - ^ X © * * , r(x)f) (x G G) 

wftere r denotes the right-regular representation of G on 6(G). Then 

6 [S] denotes the number of elements in a finite set «S. 
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/&*G°<B(G) and the series 

£/*• 
converges absolutely [4(a), p. 8] in 6(G). Let °f denote its sum. Then 
ƒ—>°f is a continuous projection of C(G) onto °6(G). 

Let ° § denote the closure of °6(G) in § = L 2 ( G ) and / the left-
regular representation of G on § . 

THEOREM 15. ° § is the closure of an orthogonal sum of closed sub-
spaces which are invariant and irreducible under I. Conversely every 
irreducible sub s pace of § is contained in °^>. Let °E denote the orthog­
onal projection of $ on°$. Then °f = °Ef for ƒ G 6(G). 

9. The space a(G, r ) . Fix G and r as in §2 and §7. We denote by 
Ct(G, r ) the space of all functions ƒ G C°°(G)® V satisfying the follow­
ing three conditions: 

(1) ƒ is r-spherical i.e. f(kixk2) =r(^i)/(x)r(fe2) (ki, k2ÇzK, xGG). 
( 2 ) / i s 3 - n n i t e . 
(3) \f\ satisfies the weak inequality. 

For a psgp P = MAN of G, put 

dp(m) = | det(,4<Z(w))n|1/2 (m G MA). 

Let a be a variable element in A. We say that a-->poo if <j(a)~->oo and 
there exists a number e > 0 such that «(log a) ^ea(a) for every root a 
of (P, 4 ) . Since MA is a reductive group with finitely many con­
nected components and KM — Kr\M is a maximal compact subgroup 
of MA, the space ®(MA, TM) can be defined without difficulty. 

THEOREM 16. For any fÇzQ>(G, r ) , there exists a unique element 
fpGQ(MA, TM) such that 

lim {dp(ma)f(ma) — fp{ma)\ = 0 
a—>oo 

P 

for mÇ^MA and aÇ.A. 

Given ƒ GCt(G, r ) , we write / p ~ 0 if 

) (<l>(m), fp(ma))v dm = 0 

for all <t>(E:0®(M, rM) and aG-4. Here the scalar product is in V and 
the integral is always convergent. 

LEMMA 7. Let ƒ be an element in &(G, r) swcft /Aa£ fp~Q for every 
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cuspidal subgroup P of G. Then f—Q. 

Here the analogy with Theorem 11 is obvious. 
For any integer q, let &q(G, r ) denote the space of a l l /£Ct(G, r) 

with the following property. If P is a psgp of G, then fp~0 unless 
prk P = q. 

THEOREM 17. a0(G, T)=°<5(G, T). Fix f 7*0 in Q,(G, r) and choose a 
psgp P = MAN of G with the following two properties: 

(1 ) /POO0. 

(2) P is minimal with respect to condition (1). 
Then for any fixed aÇzA, the function m-*fP(ma) (mEM) lies in 
°e(Af fTjr). 

10. The Eisenstein integral. Fix a cuspidal subgroup P = MA N of 
G. Given ^(E°C(ikf, TM), we extend it to a function on G as follows: 

\p(kman) = r{k)yp{m) (& £ 2T, w £ M, a£: A, w £ iV). 

For *>£<*<.* and ^ £ ° e ( I f , r ^ ) , defi ie 

E(P:f ivix) = f ^{xk)r{k"1) expfK- l ) 1 ' 1 * - pP)(HP(xk))}dk 
J K 

for X<ELG. We call this the Eisenstein integral. For fixed P and ^, it is 
an analytic function of (v, x) on ac*XG which is holomorphic in v. 

LEMMA 8. E(P:\f/:v)E.a(G, r) for p£ct*. ƒƒ P ' is another psgp of 
G, then 

Ep,(P:t:v)~0 0>£a*) 

unless P' is associated to P . 

Let N(A) and Z(A) respectively denote the normalizer and cen-
tralizer of A in G. Then Z(A) = MA and 

is a finite group which operates on a and a* in the usual way. Let 
P' — MAN' be a psgp with the same split component A. Then if 
p £ a * is not too special (i.e. does not lie on a finite set of hyperplanes 
passing through the origin), there exist unique endomorphisms 
CP'\P(S: v) (s£to) of the finite-dimensional space L = °Q(M, rM) 
(Theorem 10) such that 

Epf(P:^:v:ma) = ] £ ( C P ' | P ( ^ ^ ) W exp((-l)^2sv(JLoga)) 
«ett> 
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for all m£Af, a(EA and i^GL. Regarded as functions of v, CP>\P(S: V) 
are meromorphic on a* + (--l)1,2U where U is an open neighborhood 
of zero in a*. However it seems likely that they are actually mero­
morphic in the whole complex space ac*. Here the analogy with 
Eisenstein series is quite clear (see [4(b), Chapter V] and [4(d)]). 

11. The Fourier transform of a Schwartz function. From now on 
we shall assume for simplicity that G satisfies the conditions of §4. 
Let a be a 0-stable Cartan subalgebra of g and A the corresponding 
Cartan subgroup of G. Put Ai = AC\K and AR = exp a#. Let A*, Ai* 
and AR* denote the character groups of A, Ai and AR respectively. 
Then we can identify AR* with &R* and therefore A* with AI*X(*R*. 

Let (?(aij) denote the set of all psgps P of G with split component 
AR. Then P = MARN and Ai is a compact Cartan subgroup of M. 
Let £M denote the algebra of all differential operators on M which 
commute with left and right translations of M. Then for every 
a*ÇzAi*t we have (see §4) a tempered and invariant eigendistribu­
tion 0a* of £M on M. 

Fix a*£;A*. Then a*=(a 0*, v) where a 0 *£i4i* and ^Ga^*. We 
now define a tempered distribution ©a* = ©<*<>*> » on G as follows: 

e«*a) = Ms/.>) (/ee(G)). 

Here 

gfAm) ^ I f(man) exp((~ l)lf2v + p)(log a)dadn, (m £ M) 
ARXN 

p = pp and 

f(x) = f f(kxtrl)dk (xEG). 
JK 

The Haar measures da and dn are normalized as in §6 by da = ddR 
and dn = dn. One can show that gf,vÇz&(M) and ®a* is a tempered 
and invariant eigendistribution of 3 on G. Moreover the definition 
of ©o* is independent of the choice of P in (9(<1R). 

Let A be the normalizer of A in G. Put W(G/A)=I/A. Then 
W(G/A) is a finite group which operates in the usual way on a, 
A and ^4*. Let Q be the set of all positive roots of (Q, a) (under some 
order) and Qi the subset of those « G o which vanish identically on 
aR. Put 

0 ^ I I «̂> i® — I I Ha, 
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where Ha denotes, as usual, the element in ac dual to a under the 
Killing form. Let ctr be the Lie algebra of 4 j and X the linear function 
on ctj given by 

(a0*, exp H) - eX(H) (H G a/). 

We define log a0* = X, log a* = X + ( — l)1/V and ©i(a*) ==eö/(a0*) =töj(X), 
fö(a*) = tü(a0*:ï') = g ( X + ( — l)1 / 2 p). Since ©i2 is invariant under 
W(G/A), öi* = €i($"gr ( 5 G ^ ( G / 4 ) ) where €1(5) = ± 1 . Let 4 r * ' de­
note the set of all ao*G4r* such that öj(ao*) 5^0. 

LEMMA 9. ©,«*=€r(s)0a*/or sEW(G/A) and d * £ 4 * . 

This follows from Lemma 1 (§4). 
Since Ai* is a discrete group, 4 * = 4r*Xafl* is a Lie group. By 

a polynomial function p on -4 *, we mean a function of the form 

ƒ>(<**) = s(log a*) (a* £ il*), 

where g is a polynomial function on ac*. Let £>((XR*) denote the alge­
bra of all translation-invariant differential operators on ct/j* and 
3D (4*) the algebra of differential operators on A* generated by 
3}(a#*) a n d the polynomial functions on A*. Let 6(4*) be the space 
of all functions ƒ G C°° (4*) such that 

/*/>(/) = sup \Df\ < 00 
A* 

for all DG£>(4*). We topologize 6(4*) by means of the seminorms 
HD (£>G£>(4*)). Then Cc°°(4*) is dense in 6 (4* ) . By a tempered dis­
tribution on 4 * , we mean a continuous linear function on 6 (4*) . 

For a n y / G 6(G), put (see §7) 

A(a*) = (Oa*,/) (a* G 4*). 

T h e n / A G 6(4*) and ƒ—»/̂  is a continuous mapping of 6(G) into 
6 ( 4 * ) . 

LEMMA 10. Let ƒ G 6(G). r fo» 

ÏA(SO*) = eiWA(a*) (j G W(G/A)9 a* G 4*). 

This is an immediate consequence of Lemma 9. 
Let 4*(5) denote the set of all points a * £ 4 * where a(a*) = 0 . 
Now fix a complete set a* (1 ̂ i^r) of 0-stable Cartan subalgebras 

of g, no two of which are conjugate under G. Let Ai denote the cor­
responding Cartan subgroup. Put}i=?Ai ( /G6(G)) and define €ij(s) 
(sEW(G/Ai)) as above. 
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THEOREM 18. Suppose we are given, f or each i (l^i^r)f a tempered 
distribution Ti on Ai* such that:7 

(1) T^eMTi (seWiG/Ai)), 
(2) ÊisisrTifà^OforallfeedG). 

Then8 Supp TiCAi*(S) (lSi^r). 

We think of (fi)iài$r as the Fourier transform of ƒ £ 6(G). 

12. The Plancherel formula for G. Define b, £ , W=W(8/b) and 
& as in §4. (We assume that B CK.) For any ƒ £ e(G), put 

**>(6) - [W]~i £ ö W ) (6 G B). 

Then (see §8) *F/ is a continuous function on B. We now use the 
notation of Theorem 18. Let dia* denote the Haar measure on Ai*. 

THEOREM 19. There exist unique continuous junctions d on Ai*XB 
(l^iSr) with the following properties: 

(1) d(a*: &)=0#ö t - , r ( a* )=0 (a*EAi*, bEB). 
(2) C<(5a*: 6) = 6 ^ ( 5 ) ^ ( 0 * : 6) ( ^ ^ ( G / i i ) ) . 
(3) IFe caw choose numbers c, p ^ 0 swcA /Aa/9 

|C , (a* : J ) | S c ( l + | | loga*| |) ' 

/or a// a*EAi* and bEB. 

(4) * * / ( » - E f %Ci{a*: btfiWd** 

forfEV(G) and bEB. 

The uniqueness is an immediate consequence of Theorem 18. 
Combining this with Lemma 5, we get the following result. 

COROLLARY. (-1)*CÖ/(1) = E i ^ ^ V : ! ) / ^ * /or 
/ee(G). 

This is substantially the Plancherel formula for G. 
The proof of Theorem 19 is based on a long induction on the rank 

of G. I t makes essential use of the differential equations connecting 
the functions Ff and Fg/ (zÇz£,fÇz<2,(G)). The basic idea of utilizing 
these differential equations to obtain a theorem of the above type, 

7 W(G/Ai) operates on the space of distributions on Ai* in the obvious way. 
8 Supp Ti denotes the support of Ti. 
9 The Euclidean norm on g (see §6) defines the structure of a Hubert space on gc 

and hence also on a0 and ctc* for a=cu\ 
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goes back to R. P. Langlands who had worked out the case of 
SL(2, R) by this method in 1962. 

Fix i (1 Si^r), &0*G^4*/ and put ö^ = a*B- Then the function 

d(a0*:v:b) (v G fo, b G B) 

is of class C00 on $iXB' and it is analytic in v. In fact it is a rather 
simple function which, for a fixed bÇzB', is meromorphic on §t-,c. 

13. The relation between the Plancherel measure and the asymp­
totic behaviour of certain Eisenstein integrals. Fix i (iSiSr) and 
drop it from the notation. Now put 

q(a0*:v) = Ci(a0*:v:l) (a0 G A?', v<E%). 

We wish to obtain a formula for #(a0*: *0« 
For any vG%c, put ^ = ^ + ( — l)1/Vj (^ , j ' iGS). Fix P^MARN in 

<?((*.«) and for any <5>0 let §c(ô) denote the set of all ?Gt5c such that 
\\vi\\ <d. Then if 8 is sufficiently small, we have defined (see §10) the 
meromorphic function cP\P(l: V) on %c{$) with values in the space of 
endomorphisms of °C(M, TM). Let ai, • • • , ai be all the distinct 
simple roots of (P, AR). Define üZyGcu by ai(Hj)=öi3- ( l ^ i , J ^ / ) . 
Let gc(P) denote the set of all ^Ggc such that vi(Hj)<0 ( l g j ^ / ) . 
Then £p|p(l: P) is actually holomorphic on §C(P). Put N = 6(N). 
Given #GG, we can write it uniquely in the form x = kman (kÇzK, 
mÇzM, aÇzA, nÇzN) where 6 (m) = m~l. Define K(X) =k and jx(x) = m. 

LEMMA 11. Put p=pP and H(x)=HP(x) (xGG). Then 

(cp[P(l:v)\J/)(m) 

= f ^ ( ^ ( w ^ r C K W ^ e x p I - C C - ^ ^ V + p ) ^ ^ ) ) ] ^ 

for i^G0C(Af, TM), VÇZ%C{P) and mÇzM. Here the integral is con­
vergent and the Haar measure don on N is so normalized that 

N 

Let VQ be the subspace of all » 0 £ F such that T(k)v0 — VoT(k) for 
all kEK. Fix a 0 *G^z / , *>oG V0 and define ^(a0*: i>0) ==^G°e(M, rM) 
by 

^(w) = I Ba^^ntrl)r{k)v^k (m G -&0> 
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where d0k is the normalized Haar measure on KM and 0a* has the 
same meaning as in §11. Let 5'(ao*) denote the set of all vÇz$ such 
that ©(a0*: v) 5^0. Then Cp|p(l : v)\p is holomorphic in v for ^GS'(^o*). 
Put 

||*||îf = f I 4>(f») \2dm (0 £ °e(M, rjf)), 
J M 

<1G — \ dim G/X and qM — \ dim M/KM-

THEOREM 20. There exists a constant Co(P)>0 (independent of ao* 
and r ) such that 

Co(P)q(ao*:v)\\cplP(Uv)42M = ( - l )**+ f f* M<IO*)\\4M 

forvE:%'(aQ*) and\p=\[/(ao*:vo) (flo£ F0). 

Actually it is possible to determine cQ(P) explicitly. Moreover it is 
not difficult to show that for any given ao*£-4i ' , we can choose r in 
such a way that ^(a0*: Vo) 5^0 for some floG VQ-

14. The p-adic case. First we recall some standard facts about 
algebraic groups [ l ] . 

Let 12 be a field. By an 12-group, we mean a (linear) algebraic group 
defined over 12. Let G be a connected and reductive 12-group. By a 
parabolic subgroup P of G, we mean an algebraic subgroup which 
contains a Borel subgroup of G. We say that P is 12-parabolic if it is 
parabolic and defined over 12. Let N denote the (unipotent) radical 
of P. Then N is an 12-subgroup and P is the normalizer of N in G. 

Now assume that 12 is a p-adic field (i.e. a locally compact field 
with a discrete valuation). Let G denote the set of all 12-rational points 
of G. Then GCGL(w, 12) for a suitable n^l. GL(^, 12), being an open 
subset of a vector space over 12 of dimension n2, is a locally compact 
group. Since G is closed in Gh(ny 12), it is also locally compact. More­
over it is easy to verify that it is separable and unimodular. 

By a parabolic subgroup P of G, we mean a subgroup of the form 
P = Gr\P, where P is an 12-parabolic subgroup of G. Then P is 
uniquely determined by P . Put N = G(^N where N is the radical of 
P. Let CC(G) denote the space of all continuous complex-valued func­
tions on G with compact support. For any/GCC (G) , define 

fp(x) = J f(xn)dn ( * G G ) , 

where dn is the Haar measure of the unimodular group N. ƒ is said 
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to be a cusp form if / p = 0 for all parabolic subgroups Pj&G. Let 
°Cc{G) denote the space of all cusp forms in CC(G). 

Let 7T be an irreducible unitary representation of G and §*• the 
representation space of TT. We say that T is supercuspidal if there 
exist nonzero elements c/>, ^ in $QV such that the function #-->(</>, T(X)\[/) 
(xEG) lies in °CC{G). Let °8(G) denote the set of all classes coG8(G), 
which contain supercuspidal representations. I t is obvious that 
°S(G)CS2(G). 

Let Go be an open subset of G and Cf(Go) the space of all locally 
constant complex-valued functions on Go with compact support. By 
a distribution T on Go, we mean a linear mapping of Cc°°(Go) into C. 
Let F be a function on Go which is locally summable with respect to 
the Haar measure dx of G. Then we say that T~ F if 

T(f) = f F-fdx 
J o 

for all fee: (Go). 

THEOREM 21. Le£ TT be a square-integrable representation of G. jfftew 
for any ƒ G C" (G), the operator 

"«"CJO = I f{x)ir{x)dx 
J Q 

is of the trace class. 

Since every neighborhood of 1 in G, contains an open compact sub­
group, this is an immediate consequence of the corollary of Theorem 
5. 

Define 

©,(/) = tr*r(/) ( / e C ^ G ) ) . 

Then ©T is a distribution on G which depends only on the class co of TT. 
Hence we may denote it by ©w. Then @w is invariant and the mapping 
co—»©w (co G 82(G)) is injective. 

THEOREM 22. Let ^>v denote the representation space of a square-
integrable representation ir of G. Fix 0, ^G$*-. Then 

(0, lWe,(/) = dfà f (0, T(%)T(f)w(x-i),p)dx 
J o 

= <*(*•) I <fo I f(yK4>, v&yxrWdy 
J O J Q 

forfeCe«(G). 
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This is an easy consequence of the Schur orthogonality relations. 
The function D and the regular set G' are defined in exactly the 

same way as in §2. Then D is a regular function on G and G' is an 
open and dense subset of G whose complement is of measure zero. 

THEOREM 23. Fix co£°£(G). Then there exists a locally constant 
function F on G1 such that ©„ = F on G'. 

I t seems very likely that F is actually locally summable on G and 
©w = F. In any case, the analogy with the results of §2 is obvious. 

For any a G S , we define its absolute value | a\ in the usual way so 
that 

d(at) = | a | dt 

for any additive Haar measure dt on 0. 

LEMMA 12. If Q has characteristic zero, the function \ D\ ~1/2 is locally 
summable on G. 

Put <£ = | i ) | 1 / 2 F in the notation of Theorem 23. I t seems reason­
able to expect that <3> remains bounded on G'. 

By a Cartan subgroup A of G, we mean a subgroup of the form 
A = GC\A where A is a maximal Q-torus in G. Let $A denote the 
restriction of <£ on A' = AC\G'. 

LEMMA 13. There exists a compact subset C of A such that $4 = 0 
outside C. Moreover if A is compact and Q has characteristic zero, then 
$A remains bounded on A'. 

When G = SL(2) and the characteristic of the residue field of Q is 
not 2, the characters of G have been explicitly computed by Sally and 
Shalika [s] and their results agree with the above statements. 

IS. Two problems. Let me conclude these lectures by discussing 
two problems (or conjectures) in the p-adic case. 

Fix an open compact subgroup K0 of G and let oCc(G//K0) denote 
the space of all functions in °CC(G) which are constant on double 
cosets of K0. Then one would like to show that, in case prk G = 0, 

dim°Cc(G//iTo) < «5. 

Here the analogy with Theorem 10 is obvious. 
In view of Theorem 5, it would be enough to prove that 

inf d(œ) > 0. 
«e°e((?) 

Actually I am inclined to believe that the numbers d(o)) (a>£82(G)) are 
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all integers under a suitable normalization of the Haar measure of G. 
K being any open compact subgroup of G, an affirmative answer 

to the above question would imply that 

sup [o>:b] < °o 
«es«?) 

for bÇz&(K), provided £2 has characteristic zero. 
In order to state the second problem, we have to recall a recent 

theorem of Bruhat and Tits. Let (P0, A0) be a mincuspidal pair in G 
and PQ — MQNQ the corresponding Levi decomposition [4(c), §2], 
Put AQ = GC\AQ and for any root a of (P0, -Ao), let £« denote the cor­
responding character of A$. Let ^4^ be the set of all points a £-4 o 
where |£«(a)| ^ 1 for every root a of (P0 , A0). Define to(Ao) as in 
[4(c), §2]. 

THEOREM (BRUHAT-TITS) . We can choose an open and compact 
subgroup K of G with the following properties: 

(1) G = KP0. 
(2) G = KA£CK, where C is a finite subset of M0. 
(3) Every element of ïo(Ao) has a representative in K. 
(4) If (P, A)>-(P0, AQ) is a cuspidal pair and P = MN the cor­

responding Levi decomposition, then Pr\K = (Mr\K)(NC\K). 
(5) Put KM = Kr\M and *P0 = Mr\P0 in the notation of (4). Then 

if we replace (G, Po, AQ, K) by (M, *P0, AQ, KM)> the above four condi­
tions are again fulfilled. 

We keep to the notation of the above theorem. Let r be a unitary 
representation of if on a finite-dimensional Hubert space V and let 
CC(G, T) denote the space of all functions ƒ from G to End(F) with 
compact support such that 

f(ki%k*) = r{ki)f{x)r{k2) (h, k2GK, x&G). 

Then CC(G, r ) is an algebra under convolution. On the other hand, 
let Vp be the subspace of all vG Vsuch that r(n)v = v for all nÇzNC\K. 
Let Ep denote the orthogonal projection of V on Vp. Put 

rjif(w) = r(m)Ep {m G KM). 

Then TM may be regarded as a representation of KM on Vp and so we 
can consider the algebra CC(M, TM). 

Let drp denote a right-invariant Haar measure on P and define 
the function ôp on P by the relation 

dr(qp) = ôp(q)drp ( g £ P ) . 
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For any ƒ £ CC(G, r ) , put 

ƒ<*>(*») == dp(tn)l/2 f f(mn)Epdn (m G M), 
J N 

where dn is a Haar measure on iV. Then /(P)GCC(M", r ^ ) and the 
mapping ppl f—*f(p) is actually a homomorphism of CC(G, r ) into 
CC(M, rM)- We would now like to assert that CC(M, TM) is a finite 
right-module over /xp(Cc(G, r ) ) . If this is true, much of the theory for 
real groups [4(a), Par t I I ] can be imitated in the p-adic case. 
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