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ABSTRACT. The second fundamental theorem of Nevanlinna 
concerning meromorphic functions of a complex variable is ex
tended in this note to an analogous result for meromorphic minimal 
surfaces. A similar extension of the first fundamental theorem in
volved generalizations of the classical proximity and enumerative 
functions and also a new visibility function; for the present result, a 
second enumerative function and a second visibility function are 
defined. Defect relations are discussed. 

1. Introduction. The second fundamental theorem of Nevanlinna 
concerning meromorphic functions of a complex variable [4, p. 227] 
is extended in this note to an analogous result for meromorphic mini
mal surfaces. A full presentation of the material here briefly outlined 
will appear elsewhere. Details of the proof of a similar extension of 
the first fundamental theorem can be found in [l ]. 

Let a surface 

(1) Slxj = %}{uy v), j = 1, 2, 3, 

be given in isothermal representation, that is, in a representation for 
which 

(2) E(u, v) = G(u, v), F(u, v) « 0, 

where JE, F, and G are the coefficients of the first fundamental quad
ratic form of S. Then S is a minimal surface if and only if the coordi
nate functions (1) are harmonic. 

If S is a minimal surface in isothermal representation, then the 
poles and the finite a-points, where a — (&i, a2, a3), of S are isolated, 
as are the infinities and the zeros of the area-deformation function 
E [1]. 

A meromorphic minimal surface is a minimal surface, with harmonic 
coordinate functions (1) satisfying (2), which has no singularities 
other than poles for u2+v2< °°. 

2. The first fundamental theorem. In the stereographic projection 
of extended Euclidean 3-space onto the hypersphere 
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2 2 2 2 2 

(3) V:%i + x2 + %z + (#4 — è) = (I) , 

let x(x, a) denote the chordal distance between the images of x and a, 
so that 

1 

* ' ' (1 + x-x)1 '2 

[(z - a)-(» - «)]*/' 
X^x,a; (1 + x . x) i /2( 1 + a . a ) i / 2 

for a finite. In analogy with the Ahlfors-Shimizu spherical version of 
the complex-variable case, for a meromorphic minimal surface S, and 
for a finite or infinite, we define a hyperspherical proximity f unction by 

(5) m°(r, a ; S) = — f log - - dd. 
2ir J «V«f2 x(x, a) 

Again in analogy with the classical theory, for a finite or infinite 
we let n(t, a; S) denote the sum of the orders of the a-points of S in 
u2+v2^t2 and define an enumerativefunction for 5 by 

- ^ — — l i—L-1 # + w(o, a ; 5 ) log r. 
o t 

In the extended theory, we let 

h(t, oo ; S) = 0, 

(7) I f f [ ( x - a ) - X ] 2 

h(t,a;S)=-\\ '—^Edudv 
TT J J u*Wât2 [(* - a) • (x - a) ] 2 

for a finite, where X(u, v) denotes the unit normal to 5, and adjoin to 
the proximity and enumerative functions a visibility function for 5, 
defined for a finite or infinite by 

ƒ• ' h(t,a;S) 
dt. 

o t 

The hyperspherical affinity of S to a in w2+z/2gr2, or the hyper
spherical affinity function for 5, is defined by 

(9) a°(r, a; 5) = m°(r, a; 5) + #( r , a; S) + ff(r, a; 5) + C(a; S), 

where the constant C(a; S) is chosen so that limrH>o §ï°(r, a; 5) = 0 . In 
particular, the hyperspherical affinity of 5 to oo is called the hyper-
spherical characteristic function for S and is denoted by T°(r; S). 

The generalization [ l ] of the Ahlfors-Shimizu spherical form of the 
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first fundamental theorem of Nevanlinna to meromorphic minimal 
surfaces is the following: 

(10) T°{r ; S) = 31° (r, a ; S) for all finite a. 

For any nonconstant meromorphic minimal surface 5, the function 
T°(r; S) is positive for r>0 and is an increasing, strictly convex func
tion of log r. The function iV(r, a ; S) is a nondecreasing, piecewise 
linear, convex function of logr . The function H(r, a; S) vanishes 
identically if a is infinite or if 5 is a plane surface and a lies in the 
plane; otherwise, for r > 0 , H(r, a; S) is a positive, increasing, strictly 
convex function of log r. 

3. The second fundamental theorem. For an extension of the 
second fundamental theorem, we introduce a second enumerative 
function N\(r\ S) and a second visibility function Hi(r; 5) . 

First, following the classical theory, we let 

(11) ni(f\S) = n(t, Q\SU) - n(t, °o ; Su) + 2n(t, oo ; 5) , 

where 0 = (0, 0, 0) and the surface Su is defined by 

(12) Su'Xj = d%(^, z>)/d«, j = I? 2, 3. 

The function ni(t; S) registers the multiple points of S in the disc 
u2+v2^t2, in such a manner that a finite or infinite fe-fold point of S 
contributes k — 1 to ni(t\ S). We then define the enumerative function 
N1(r;S)by 

Ni(r; S) = dt + «i(0 ; S) log r 

- tf(r, 0;SW) - tf(r, «> ;SW) + 2tf(r, oo ;S). 
Next we let 

(14) hit) S) = — f f ( ~ £ i 0 ^ * , 
2TTJ ./„»+»** «* 

where i£(^, *;) denotes the Gaussian curvature of S. We note in 
passing that for a minimal surface 5 we have K g 0 so that — EK^. 0, 
and in fact that —X is the area-deformation ratio for the map of 5 
onto its spherical (Gaussian) representation [3, p. 253] ; thus 27rhi(t; S) 
expresses the area of the map of u2+v2^t2 on the Gaussian sphere 
for S. We now define the visibility function Hi(r; S) by 

Hi(r;S) = r ^^-dt 
*J o t 

<i5> 

l 

= — f I f f {-EK)dudv\-
2irJ0 LJ J„V.Js*2 J 
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A generalization of the second fundamental theorem of Nevanlinna 
to meromorphic minimal surfaces can now be stated as follows: 

Let S be a nonconstant meromorphic minimal surface and let a\t a2, 
• • • , aqbe q points, q>2. Let kbe a given real number, k^O. Then 

î > ° ( ' , a y ; S ) â 2T°(r;S) - Ni(r,S) - #i(r;S) 
(10) ;«.! 

+ 0[logr] + 0[\ogT°(r;S)] 

for r outside an open set A& such that f&k r
k dr < oo. 

4. Indication of proof. On the hypersphere F given by (3), the mass 
distribution 

[ q 2 l 8 r q 2 "Y~a 

I I - log I I - 7 — r > « > i , 
y-i x ( a , ay) J L y=i x(*> &Ù J 

is positive for O O and is continuous except at the points a}-; further, 
with C suitably chosen, p is of total mass 1. 

Multiplying both sides of (10) by p(a) and integrating over V, by 
(9) we obtain 

(18) T°(r;S) - m?(r;S) + NP(r;S) + ffP(r;S) + CP(S), 

with 

(19) Hp(r;S) - ƒ ƒ ƒ ff(r,a;S)P(a)dVa 

and analogous expressions for mp{r\ S), Np(r; S), and CP(S), where 
d Va is the element of volume on V. 

Since N(r9 a ; 5) = 0 except on a set of 3-dimensional measure 0, we 
have Np(r; S)==0. For r0 fixed, r0>0, and for r>r0, m°p(r\ S) and 
r°(r0; S) are positive, and accordingly (18) yields 

(20) Hp(r;S) - Hp(r0;S) < T°(r;S) + rn°P(r*\S). 

Now by (7), (8), and (19), we have 

(21) Hp(r;S) - Hp(rQ;S) = ƒ ' [ ƒ \ ( r ; 5 ) « î r j * , 

where 

(22) X(r;5) = — f &«», 
2 W w

24-*2«r2 
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with 

v l(x — a ) - (x — a)J2 

From (22) and the inequality between the geometric mean and the 
arithmetic mean, we obtain 

(24) log \(r ; S) è — f log Ed$ + — f log add. 
2TT 

We shall now determine values or estimates for the three terms 
in (24). 

The form of the relations (20) and (21) is exactly the same as that 
of relations in the Nevanlinna theory [4, p. 224], so we may use 
methods from that theory to show [4, pp. 226, 227] that 

(25) log \(r;S) = 0[log r] + 0[log T°(nS)] 

for r outside an open set Ak such that /A* rkdr < oo. 
The first integral in the right-hand member of (24) can be evalu

ated by an application of Green's theorem. This gives 

— f log Edd = 2N(r, 0 ; Su) - 2N(r, <*> ; Su) 
2?r J W

2
+Î,W

2 

(26) 
+ —(( f f AlogEdudv)— 

2wJ0\J J ic\v2<t2 / t 
+ const. 

Since A log £ = -2EK [2], by (13), (15), and (26) we therefore have 

~- f log EdO = 2Nx(r ; S) - 4i\T(r, co ; S) 
(27) 2TTJ „ V U 

+ 2Hi(r;S) + const. 

Substituting from (17) into (23), integrating over V except for 
small spherical regions about the ay, and taking the limit as the radii 
of the spheres approach 0, we find that 

(28) ^ , . ) = ( l + X . X ) - 2 r f l x ( x , a y ) l [ l o g f l - 7 -]aB(u,v), 
L y=i J L y-i x(x, ay) J 

where B{u, v) is bounded. Thus (cf. [4, p. 228]), by (5), the second 
integral in the right-hand member of (24) satisfies 
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(29) 2TT •/ o i - i 

+ 0 ( l ) + 0 [ l o g T ° ( r ; 5 ) ] . 

Now (16) follows from (24), (25), (27), and (29). 

S. Defect relations. In conformity with the classical theory, we 
define, among other numbers, the following: 

(30) S(a;S) = lim inf (m°(r, a ; S)/T°(r ; S)), 
r—+ « 

(31) *(S) - lim in f^Cf ; 5)/T°(r; 5)), 
r—*eo 

(32) *(S) = lim inf(Hi(r; S)/T°(r; S)). 
r—>eo 

The numbers (30), (31), and (32) are nonnegative, and they satisfy 

* ( a ; S ) £ l , *CS)55 2, ¥ ( $ £ 2 , 

E 8 ( a ; 5 ) + f ( 5 ) + * ( S ) g 2. 
a 

These and other related inequalities suggest questions as to the 
existence of nonplane meromorphic minimal surfaces S for which 
ô(a; S), &(S), and ^f(S) are related in specified ways. For example, 
Richard E. Tafel has shown, in his as yet unpublished doctoral disser
tation, that for any given S0, 0 < S 0 < 2 , there is a nonplane meromor
phic minimal surface 5 for which ^2a d(a ; 5) = ôo. 
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