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The main purpose of this announcement is to show that those 
purely inseparable field extensions which behave in a certain sense 
like normal extensions in fact are of a fundamentally abelian char­
acter. Detailed proofs of most results are contained in the second 
author's thesis [ó]. 

1. Exponent 1. Throughout K will be a finite purely inseparable 
extension of a field k of characteristic p and Der K/k will denote the 
.K-space of derivations of K over k. We consider first the case where 
K/k has exponent one. In that case we have 

THEOREM 1. Suppose thai 0i, • • • , <j>n are commuting derivations 
of K over k which are linearly independent over k. Then 

1. They are independent over K. 
2. [K:k]^n. 
3. Equality holds iff the k-s pace Vo spanned by </>i, • • • , <t>n is closed 

under the formation of pth powers, in which case Vo®kK = Der K/k. 

Let us call a i£-subspace V of Der K/k restricted if $ £ V implies <t>v 

G V. From Theorem 1 it is then easy to deduce that : 
(i) every restricted subspace of Der K/k is spanned by commuting 

derivations, and 
(ii) every restricted i£-subspace V of Der K/k is of the form 

Der K/L for some unique intermediate field k^L^K. 
The latter assertion, an exact analog of the fundamental theorem of 

the Galois theory for purely inseparable extensions of exponent one, 
was first proved by Jacobson [2] under the additional hypothesis 
that V is a Lie subalgebra of Der K/k. The stronger form is due to 
Gerstenhaber [4]. One sees a posteriori that a restricted subspace is 
necessarily a Lie subalgebra. 

The three parts of Theorem 1 are precisely analogous to Theorems 
12, 13, and 14 of [l ], by means of which Artin demonstrates the usual 
"fundamental theorem" of the Galois theory. 
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2. Higher exponents. An approximate automorphism of order m 
("higher derivation" in the terminology of Jacobson [3]) of K/k is a 
formal polynomial 

(1) ** = 1 + tyi + Pfc + • • • + ^ - 1 0 m _ 1 

where the <t>% are ^-linear maps of K into itself (1 =idx) such that 

**(fli) = (**a)($«&) mod/™, 

i.e., <£* is an automorphism of i£[)]/(2w) over 
k[t]/(tm)> For fixed 

these form a group Gm, and for every integer / > 0 there is a mono-
morphism Gm—>Gim defined by sending t to tl. This is an isomorphism 
for rn*zpn, where n is the exponent of K/k [4], so we get Gp" — G 
and call this "the" group of approximate automorphisms of K/k. 
An intermediate field L of K/k is the fixed field for a subgroup H oi G 
iff i£ is modular over L, i.e., of the form L(XI)®L • • • ®z,£(#r) for 
suitable xi, • • • , x r £ i £ (Sweedler, [5]). We shall describe here those 
subgroups H which fix the elements of an intermediate field L. 

An approximate automorphism <£* is abelian if the <j>i appearing in 
(1) commute. An abelian family is a subgroup A of G in which all <j>i 
appearing in all $t in A commute with each other. I t is a basic fact 
that if L is the fixed field of some subgroup H of G, then it is already 
the fixed field of some abelian family [4]. If &t =

s l + / # i + / 2 # 2 + • • • is 
any approximate automorphism and aÇzK, then we define maps Ta 

and V from G into itself by setting 

Ta$t = $at = 1 + at<t>i + aH^2 + • • • , 

and 

V3>t = $tP = 1 + fltyx + / 2 ^ 2 + • • • . 

Note that V is an endomorphism of G but Ta generally is not unless a 
isin&. If $ f is abelian, then P<£>< = l+/$i+£2</>2 + • • • is also an approx­
imate automorphism; P is an automorphism when restricted to any 
abelian family. 

The exponent of K/k being n, all polynomials and power series in 
/ will be understood modulo tpH. If XQJ Xiy ' * ' t ^n—i are variables and 

pt ip%—i ^ 

Wi(x) = x0 + pxi + • • • + /> Xiy i = 0, • • • , n — 1, 

the ith Wit t polynomial, then 

n-1 

e(t, (a?)) = exp ]T) (/*7>0 w<(*) 
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is a polynomial whose coefficients are integral a t p, hence meaningful 
modulo p. 

THEOREM 2. An abelian family is generated by its elements of the 
form e(tl, (0)), where (0) = (0o, 0i, • • • , 0n-i) is a sequence of (necessarily 
commuting) k4inear maps of K into itself. 

A sequence (0) = (0o, 0i, • • • , 0n-i) of commuting maps of K into 
itself such that e(t, (0)) is an approximate automorphism is an 
extended derivation of order n — 1. I t is easy to verify that the first 
nonzero map amongst the 0's is an ordinary derivation. If this is 0,-, 
then we call 0; the leading component of (0), and we say that (0) has 
degree n—i. 

If we have an abelian family A, then the set of all extended deriva­
tions (0) such that e(t, (0)) lies in A will be denoted by £(A). Set 
P(9) = (61 0?, • • • , 0Li) , V(d) = (0, 0o, • • • , 0n_2). Also, for (0) of the 
form (0, • • • , 0, 6i, 0,-+i, • • • , 0n-i), we can define 

Ta(S) - (0, • • - , 0, a»% a*i+1di+1, • • • , ^ " " ^ - i ) 

for all aGk*~*. Then Pe(t, (0)) =e(t, P(0)), Ve(t, (0)) =>e(t, 7(0)), and 
roe(/, (0)) =e(t, r a(0)). A set £ of extended derivations of order n — 1 
is an abelian family of extended derivations if all components of all 
(0) in £ commute and if £ is a group in the Witt addition. We say 
that £ is saturated if with every (0), £ also contains P(0), F(0), and 
if for every 0£<£ of degree n—i, £ also contains all Ta(0) with aÇzkp \ 
We then have 

THEOREM 3. Let A be an abelian family of extended automorphisms. 
Then A is saturated iff £(A) is saturated. Every saturated abelian family 
£ of extended derivations is of the form £(A) for a unique saturated A. 

Since the fixed field L of £(A) is the same as that of A, it follows 
that if £ is a saturated abelian family of extended derivations then 
the fields between L and K over which K is modular are in 1-1 cor­
respondence with the saturated subfamilies of £. 

A subset 5 of a saturated £ is a set of generators if it generates £ 
using Wit t addition and the operators V, P and Ta, where in Ta(6) 
we permit a to be in kp * whenever (0) has degree n—i. The set is 
standard if it is a minimal set of generators in which the leading com­
ponents of the (0) in S are all linearly independent over k which im­
plies that they are such also over K (Theorem 1). Let Si be the num­
ber of elements of the standard set 5 which are of degree n—i. 

THEOREM 4. If L is the fixed field of S (and hence of £) then K is of 
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the form L(X\)(&L • • • ® L L{xr), where the number of xys having ex­
ponent i over L is sn-i. 

Finally we have 

THEOREM 5. Let St be a saturated abelian family of extended deriva­
tions with fixed field L, and H be the subgroup of G generated by all 
approximate automorphisms of the form Ta e(t, (#)), where (6) is an 
extended derivation in £ and a is in Kp~l whenever the degree of (0) is 
n—i. Then H is saturated, i.e., the full subgroup of G consisting of all ap­
proximate automorphisms with L as fixed field. Conversely, every satu­
rated H is of this form. 
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