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1. Introduction. Suppose X and X is a pair of standard processes 
in duality relative to a Radon measure £. We refer the reader to [ l ] 
for all terminology and notation not explicitly denned here. In par
ticular (Ua) and (Ûa) denote the resolvents of X and X respectively 
and the «-potential kernel ua(x, y) satisfies 

Ua(x, dy) = ua(x, y)dy, Ûa(x, dy) = ua(y, x)dy. 

Here dy ~^(dy). We make no regularity assumptions on the resolvents 
of X and X. One of the most important properties of such dual pro
cesses is (VI-1.16) (all such references are to [l]) which states that if 
A is a Borel set then for all a è 0 and x, y 

(1.1) PAU"(X, y) = u«PA(x, y). 

This result which is due to Hunt says that the process X killed at the 
time it first hits A and the process X killed when it first hits A are in 
duality. In particular if we define 

Qtf(x) = &{f{Xty, t < TA} and &f(x) = Ê*{f(Xt);t < TA\ 

(for typographical reasons we will omit the hat "*" in those places 
where it is obviously required—see the remark on p. 262 of [ l]) , then 
it is a standard observation that (1.1) is equivalent to 

(1-2) M, i) = (/. G*) 
for all JâO and for all continuous functions with compact support, ƒ 
and g. Here (<£, yp) =J<t>{x)yp{x)dx. 

The purpose of this paper is to announce an extension of (1.2) and 
(1.1) to a more general class of multiplicative functionals than those 
of the form Mt = IiotTA)(t)* Our basic result is that if M is an exact 
M F (multiplicative functional) of X then there exists a unique exact 
MF, My of Xsuch that (1.2) holds where {Qt} and {Qt} are the semi
groups generated by M and M respectively and that an appropriate 
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analogue of (1.1) also holds. Actually the existence of such an M is 
an easy consequence of a result of Meyer [3] and undoubtedly is 
known to many people. Our key result is the fact that this correspon
dence is multiplicative, that is (MN)~ = MN> and it is this fact that 
turns the above correspondence into a useful tool. In particular this 
gives a new proof of some recent results of Revuz [4]. Detailed proofs 
and applications will appear elsewhere. 

2. Description of results. Let Af = (Mt) be an M F of X; throughout 
this paper all MF's are assumed to be right continuous, to satisfy 
0^ikTt<gl, and to vanish on the interval [£*, oo ]. Moreover equality 
between MF's will always mean equivalence. See [l, III-1.6]. 

Let Qtf(x) = E* [f(X<)Mt} for / ̂  0 and 

V«f(x) = E*if er"'f(Xt)Mtdti 

for ce^O, so that (Qt) and (Va) denote the semigroup and resolvent 
generated by M. For each a ^ O , define 

PMf{x) = - £ * { ƒ <r*'f(Xt)dM\ if x E EM, 

= f{x) if x (£ EM> 

Here EM — {X:PX(MQ = 1) = 1} is the set of permanent points of M. 
It is well known and easy to check that, at least for a > 0, 

a <x ot <x 

(2.1) U - V = PMU . 
From here on we assume that X and X are standard processes in 
duality relative to a Radon measure %idx) —dx. Then using standard 
techniques one obtains a function va(x, y) such that V°f(x) 
= fvaix,y)fiy)dya.nd 

(2.2) u°(x9 y) = vaix, y) + PMuaix, y). 

If we now define Vaf(x)=fvaiy1 x)f(y)dyf it is easy to check, see 
Meyer [3], that iVa) is a resolvent exactly subordinate to ( # a ) . Con
sequently it follows from results of Meyer, [3] and [l, 111-2.3], that 
there exists an exact MF, M, of X which generates (F a ) . We will 
write PM instead of P% for the operator associated with M, and 
pM(dy, x) for the corresponding measure. This discussion leads to the 
following theorem. 

(2.3) THEOREM. If M is an exact MF of X, then there exists a unique 
exact MF, Û, of X such that 
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(2.4) PMUa(x, y) = u«PM(%, y), 

which is equivalent to (Vaf, g) = (ƒ, Vag) for all a>0 and f, gEiC^ 
Moreover the mapping M—>M is bijective (from the class of exact M F s 
of X to the class of exact MF s of X). If ÊM is the set of permanent points 
of Mf then EM&EM is semipolar. Also EM —EM is polar relative to 
(X, ikf), and so if M does not vanish on [0, f) then E — EM is polar. 

(2.5) THEOREM. The map M—>M is multiplicative in the sense that if 
M and N are exact MF s of X, then (MN) " == MN. 

(2.6) COROLLARY. If T is an exact terminal time f or X, then there 
exists a unique exact terminal time T for X such that for all a ^ 0, 
PTUa(x, y) = uaPf(x, y)-

I t follows from (1.1) that if A is a Borel set and T~TA then 
f= tA. It is also fairly easy to check that if h is a bounded nonnega-
tive Borel function and Mt

:=e^(—ft
0h(X8)ds)} then M , = 

exp(—/o h(Xa)ds). Combining these remarks with (2.5) and using an 
easy passage to the limit one obtains the full strength of the duality 
relationships proved by Hunt [2]. 

Let S = inî{t:Mt = 0} and 3 = inf{t:M t = o}. Then 5 and S are 
dual terminal times, although they need not be exact. We will say 
that M is continuous provided t—*Mt is continuous on [0, S) almost 
surely, and that M is natural provided t—^Mt and t—>Xt have no com
mon discontinuities on [0, S) almost surely. With these definitions we 
have the following theorem. 

(2.7) THEOREM. If M is continuous, then M is continuous. If M is 
natural, then M is natural. 

The following corollaries are closely related to some recent results 
of Revuz [4]. 

(2.8) COROLLARY. Let A be a continuous additive f unction of X that 
is finite on [O, f) almost surely, and let Mt — exp[—At]. Then there is a 
unique continuous additive functional A of X restricted to EM (E—EM 

is polar in this case )such that (ƒ, JJ\ Vag) = (#2Fajf, g). 

In [4] Revuz associates a measure VA with any additive functional 
A. 

(2.9) COROLLARY. Let A be as in (2.8). Then VA=I>A. 

It is known from Revuz's work that VA is cr-finite and does not 
charge semipolar sets for A as above. If, in addition, A has a finite 



1056 R. K. GETOOR 

«-potential, then Utix, dy)—ua(xt y)vA(dy) for all x and ÛA(X, dy) 
— VA{dy)ua{y, x) for XÇZEM- These last results can be extended to 
natural additive functionals under some additional restrictions. 
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