
BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 77, Number 4, July 1971

BOOK REVIEWS

Recursiveness, by Samuel Eilenberg and Calvin C. Elgot. Academic
Press, New York and London, 1970. v i i+89 pp.
Jorge Luis Borges (see e.g., Borges [1962]) has made impressive use

of an unusual literary device—the review of a nonexistent book.There
are ideas better conveyed by hinting at their elaboration elsewhere
than by any such elaboration. In reading Eilenberg and Elgot (hence­
forth, E2), one senses the lack of such a review, for by elaborating
mathematical details to the exclusion of all motivation, E2 have
robbed the reader of many of their insights.

The preface of this book makes a bold claim :
"On the one hand, it appears that a more algebraic, less arithmetic

point of view [than is usual in the study of computable (recursive)
functions] has been sought, and on the other hand, a theory of pro­
grams for digital computers appears to be the long-range aim. • • •
This short monograph is a contribution to the latter activity. Its
algebraic flavour is more or less obvious. Its connection with com­
puter science is less obvious."

And then it promises that little aid will be given the reader in
evaluating this claim :

"Because of the novelty of the approach, known theorems often
appear in unfamiliar guises. Because of this we have not attempted to
assign authorship to the theorems."

By writing the book instead of the review, E2 have made it hard for
us to accept their claim—for while they have recast the elements of
recursive function theory in the spirit of modern algebra, and have
made minor use of operations somewhat like those of automata
theory, they advance no evidence that their approach contributes
more to computer science than other approaches. In fact the words
'computer' and 'program' do not appear to recur in the volume after
the preface! However, one knows that Elgot has thought much about
theories of programming—see, for example, Elgot and Robinson
[1964], which is not cited by E2—and so why Elgot chose to give no
hint of his expertise in this monograph is a mystery. A good theory of
programs probably will be heavily algebraic—perhaps E2 were not so
far from the spirit of Borges when they claimed their book as a fore­
runner !

E2 's aim, though nowhere explicated in the monograph, seems to
have been presented by Eilenberg in lectures as follows: "Much of the
power of modern mathematics has arisen with the development of

Copyright © 1971, American Mathematical Society

512

BOOK REVIEWS 513

algebraic methods and terminology which contribute to almost all
branches of mathematics. Recursive function theory is notable for an
almost complete lack of this algebraic approach. If only we could
recast it using this language, the subject should be immensely re­
vitalized." E2 succeed in showing that an algebraic recasting is
possible, but their results are all elementary—for example, the only
undecidability result is in an appendix which rephrases (with due
credit) Peter's [e.g. 1967, §9] presentation of a recursive function
which is not primitive recursive. I t thus remains to be seen whether
the algebraic approach of the present monograph when wedded to the
motivation of an approach such as Rogers' [1967] can yield dramatic
advances that could not have been achieved without it. Perhaps it is
reasonable to expect that algebraic methods—with the resultant in­
crease in the ability to compute with symbolic expressions—will help
us to systematise the labyrinthine diagonal arguments of recursive
function theory. This may lead to generalisations on which a whole
new level of theory will be built. I t may not. Algebra will help, but
whether the details of the approach here reviewed will make much
difference is problematical. So much for rhetoric. What does the paper
actually do?

The usual setting for recursive function theory is within the class of
partial functions ƒ :Nn—*Nf i.e. functions whose domain is a subset of
Nn, and whose range falls within N. A number of authors—e.g. Asser
[i960], Hu [i960], Vuckovic [i960], Péter [l96l] , [1962], Shepherd-
son and Sturgis [1963], Schwenkel [1965] and Arbib [1969]—have
taken a more automaton-theoretic approach and instead considered
partial functions ƒ : Wr—>W where W is some (usually finitely gener­
ated) free semigroup W=X*. E2 note in their preface that a more
algebraic, less arithmetic point of view is sought, but nowhere admit
their debt to other authors for the transition from N to X*. In fact,
Péter [1961], [1962] has gone even further and set up recursive func­
tion theory for any free algebra, and one wonders why E2 did not
extend their treatment to this case. If X has but one element, we may
identify W = X* with N by matching the element of W of length k
with the integer k. Within this setting, we may present the standard
definitions for finite X :

For each xÇzX, let LX:W—^W be the left-successor w*~*xw.
For each w£iV, let Un: Wn—>W:(wi, • • • , wn)*-+l be the function

which replaces n arguments by the unit 1.
For each n(EN and 1 Sj^n, let EC: Wn-+W: (wi, • • • , wn)^Wj be

the function which projects thej th of n arguments.
Composition is the operation which, when applied to the partial

514 BOOK REVIEWS [July

functions h:Wm—>W and gj:Wn—>W, l ^ j ^ m , yields the function
f:Wn->Wdefined by

f(wh • • • , W„) = A(gl(Wi, • • • , W„), • • • , gm(Wi, • • • , W»)).

Recursion is the operation which, when applied to the functions
g:jyn-i__+w a n c j j ^ : ^ » — » ^ , for each x&X, yields the function
ƒ : W"w—» IF defined recursively by

jf(l,w2, • • • ,w„) = g(w2, • • • ,w„),

jf(sw, w2, • • • , wn) = hx(J(w, w2> • • • , w„), w, w2, • • • , w„) for x £ I

Minimisation in {#}*, where x is a given element of -X", is the
operation which, when applied to g:Wn—>W, yields the function
ƒ: W^-ïW defined by

/ (W i , • • • , Wn-l) = HxW[g(wh • • • , Wn_i, TO) = 1] ,

the string xk for which k is the smallest integer such that
g(wi, • • • , «v-i, #*) = 1, while g(wi, • • • , w„_i, #') is defined, but non-
null, for O^Kk.

Let r be any class of partial functions ƒ : Wr—*W (with various
exponents r). We denote by £>T{W') the smallest class of partial func­
tions containing F and the LXi Un and II" which is closed under com­
position and recursion. We denote by &r(W') the smallest class of
partial functions containing T and the Lx, Un and II" which is closed
under composition, recursion and minimisation. We say a function is
primitive recursive if it belongs to 8^ (also written 8o), and we say that
a partial function is a partial recursive if it belongs to (P0 (also written
<Po).

Before contrasting these definitions with those of E2 we should note
that £ 2 work with relations. They write a relation as ƒ : C-*B and
identify it with an additive function from subsets of C to subsets of B.
We recapture partial functions if \f(c)\ 5^1 for each c £ C , and we
recapture ordinary (often referred to in recursive function theory as
total) functions if we have \f(c) | = 1 . 6i(A') is then the category of all
relations of the form ƒ : A P—>AQ> p, g^O, under the obvious composi­
tion; and the partial functions and functions form subcategories
(?(A') and $(A'). By always considering subcategories of Gi(A'), E2

can make use of composition and identity functions without ex­
plicitly mentioning them. In giving their definitions, let us restrict
attention to the case A = W = X* for finite X. E2 note various places
at which their theory is available more generally. Recursive function
theorists usually work only with functions of the form ƒ : Wr—^W
and so must use the somewhat clumsy form of composition we pre-

I97i] BOOK REVIEWS 515

sen ted above. E2, working within the category 6i(W') and its sub­
categories, use the natural composition of/: Wr—>W8 and g: Wm-+Wr

a s ƒ o g:Wm—>Ws:w*-:>f(g(w)). However, to recapture the other
composition one must then be able to explicitly select from any
ƒ: Wr->W8 a desired II? o ƒ: Wr->W and obtain

g = (gu ' * • > gm):Wn ~> Wm:w »-* (giO), • • • , gm(w))

from the set of functions gj:Wn~>W, 1 ^jt&tn. To do this, we simply
need the functions II* and the operation of pairing which assigns to
any pair of functions ƒ : Wa—^WU and g:W8—>Wv the function (f,g)i
W8-~>Wu+v:w>-*(f(w), g («/)). However, E2 do not tell us of this
necessity, but instead state baldly the unmotivated definition:

A subcategory a of 6i(W') is called admissible if it satisfies the
following axioms:

(1) The objects of a are all the objects Wr, r ^ 0, of 6i(W).
(2) Cylindrification. If f\Wr—>W* is a relation in a, then so is the

relation

W X ƒ : Wl+r -> TF1+S: (a, y) ^ (*, fy).

(3) Transposition. The function 0*: PP—>1/P (fe ^ 2) defined by

0*(wx, w2, wz, - - • , WA) = (w2, wi, w8, • • • , wk)

is in Œ.
(4) Diagonal. The function A:PF—»PP:wl-»(ze;, w) is in Cfc.
(5) Projection. The unique function II : W—*W°:vfl-*l is in a.
Clearly, Ct is admissible just in case it satisfies the need we have

motivated, and also contains the projection II. To get the primitive
recursive functions, then, we must add something like Lx and Un and
the operation of recursion. E2 do this as follows (they give other
definitions and prove them equivalent, but one will do to give the
flavour) :

An admissible subcategory Ct of $f(W') is called primitive if it
satisfies the following axioms:

(1) Unit. The function U:W°—>W with value 1 is in &. [in my
copy, W° was misprinted as PP. Note that Un~ Uo TL ou? .]

(2) Left successors. For each # £ X , the left successor function Lx\
W->W is in a.

(3) Left exponentiation. Suppose each function kx:W
r-~>Wr is in Q,

for each x in X. Then so is their left exponential k:Wr+1—*Wr defined
inductively as follows:

k(l, w) = w

k(xwi, w) = kx(k(wij w)) for % ÇzX.

516 BOOK REVIEWS [July

Clearly recursion can do anything left exponentiation can do, and
it is a straightforward exercise to verify that left exponentiation—
with the aid of some of the given functions and other operations—
can do what recursion can do. And thus E2 are justified when they
say: The class of all primitive subcategories of 5(W') is to be de­
noted by E(W). If T is any class of functions/: Wr—>W* (with vari­
ous exponents r and s) we denote the smallest element of E(W')
containing T by 8>T(W'). The functions in &Q(W')A&+(W) are called
primitive recursive functions.

Just as in the ordinary theory we say a set AQWr is primitive
recursive just in case its characteristic function XA is a primitive
recursive function, so do E2 say that the set A belongs to the cate­
gory Ct j,ust in case XA does.

Since this monograph provides no motivation—E2 refer the reader
to other texts for the standard development and all intuition—the
reader is probably so adept a t proving such results as "all Turing-
computable functions are recursive" that stating and proving the
theorems which show the equivalence of old and new definitions
should not tax him unduly. The real problem he faces with such
theorems in the current monograph is that they are scattered, with
virtually no label, motivation or demarcation, throughout the text,
with the result that the development of the algebraic theory seems
to take far longer than it really does. When E2 introduce a new
operation, the reader must indulge in much detective work to deter­
mine whether it is a component of their algebraic approach, or
merely a standard operator in algebraic guise brought in only to be
subsumed in the new approach, but then never to be used again.

In E2 's treatment of recursive isomorphisms in Chapter I I I , I
found the algebraic approach (irrespective of the actual choice of
definitions) to be vindicated. My admittedly subjective criterion for
this was that E2, in doing almost the same work that I did in Arbib
[1969, § 6.1], read out far deeper results in the process. Having de­
fined what it was for a function to be partial recursive with respect
to a given finite alphabet, one wants to verify that the choice of
alphabet was immaterial to partial recursiveness. Regarding a string
in a ^-letter alphabet as a number in fe-adic notation, I showed that—
at least with this encoding—a function was partial recursive over
any finite alphabet iff its numerical correspondent was also partial
recursive. The elegance of E2 was that, with essentially the same
effort, they proved the far more interesting result that for any choice
of a bijection between two free monoids c\ W—>V, for which c and c~l

are (in some suitable sense) primitive recursive, one gets a bijection—
independent of the choice of c-between E(W) and E(V') under

1971] BOOK REVIEWS 517

which &o(W) corresponds to &o(V') as well as bijections of the classes
R(W') and R(V') of recursive categories which we shall define be­
low. [Note that it is the correspondence between classes—not that
between individual functions—which is independent of c] Armed
with this result, E2 are free to prove many results for the simple case
of the 1-letter alphabet, [i t is a disturbing fact that the argument for
other alphabets often seems hard to push through without the
occasional use of a lemma which pushes back to the 1-letter case.]

To reconstruct E2 's motivation for their definition of recursive
relations, it is useful to consider a very general model of a digital
computer (the original definition, and its application to a stored
program machine appeared in Arbib [1969, §6.2]). Presumably,
such considerations (based on Elgot and Robinson [1964], perhaps)
motivated E2. However, the irony of our motivation will be that it
argues for the conventional definition as much as for E2 's new
definition, and so does not advance their claim that their algebraic
recasting of recursive function theory does indeed contribute to a
theory of programs.

Briefly, we introduce the notion of a recursive computer M to
compute functions/: Wr-*WS as follows:

Firstly, M has a state-space Q of such a nature that we can speak of
partial recursive functions from Q to Q; and in fact we supply Q
with a state-transition function X :()—>() which is indeed partial
recursive.

Then, a computation of ƒ by i f proceeds as follows:
(i) We encode our data w G ^ a s an initial state in Q by applying

some partial recursive function a: Wr—»Q.1

(ii) We repeatedly update the state of M from its initial value go
by applying X until computation halts in the sense that we reach a
state q for which X(g) — q. Let this final state (if it is ever achieved) be
<2>, and let X be the (partial) function q<t*qf-

(iii) We decode q/ by some partial recursive function jS'.Q—>W* to
obtain our answer ƒ (w) =j3(<?/).

Consider, then, the following data:
(i) The a, fi and X for a Turing machine are all primitive recursive.
(ii) To get X from X it is natural to use minimisation:
Let X(g, n) be the result of applying X n times to g. I t is defined

from X by the recursion scheme:

A(g,0) = g , \(q,n + l) = X(X(g, n)).

1 Definitions of (primitive) recursive functions easily generalise to cases of mixed
alphabets, but we shall not expose the niceties here.

518 BOOK REVIEWS [July

Then we find the first n such thatX(g, n) =X(g, n+1) by minimisa­
tion

p(q) = »n[\(q, ») = Uq, n + 1)],

it being a standard exercise to recast this in the form of a "kosher"
minimisation with the aid of some auxiliary primitive recursive
functions. But then

Uq) = Hq, P(q))

and so must be partial recursive if X is primitive recursive (or even
partial recursive).

Thus if a partial function is computable by a Turing machine it
can be obtained using primitive recursive functions and one minimi­
sation, and so is partial recursive by our "old-fashioned" definition
which obtains partial recursive functions by adding minimisation to
the list of operations used to build up primitive recursive functions
from the basis functions. The converse—that all partial recursive
functions are Turing computable—is easy. This then is the machine-
theoretic justification for the operation of minimisation.

Let us approach our recursive computer via an alternate tack to
build toward E2,s characterisation. We view a relation ƒ: Wr—>WS as
being recursive just in case the relation

ryf : Wr+S ~» W° : (wh w2) »-> 1, if w2 6 f(wx),

«-* 0, if not,

is the set of all input strings for which some Turing machine will
eventually terminate.

Now given any relation g\Wr—>Wr with equal domain and co-
domain we define its closure to be the relation

g* = wr \J g U g2 U g3 • • • :w »-> U gn{w).

[Incidentally, one should note that this g* is not the usual g* of
automata theory, inasmuch as here we consider closure under re­
peated composition whereas there we consider closure under re­
peated convolution.]

Now given a and X for our recursive computer let us set

g = X X \:Q2-»Q2 and â:Wr-^Q2:w^ (a(w), \a(w)).

Then g* o d(w) = {(Xwa(w), \n+1a(w)) \n à 0 } .
Clearly, the computation initiated by w halts just in case at least

I97i] BOOK REVIEWS 519

one element of g* o â{w) is of the form (g, q). If we compose g* o a
with the relation

ry&iqu ?2)f-M, if qi = g2,

we then get 1, rather than 0 , iff the computation terminates. Thus, if
(rYjO(«,X) is the relation determined by our recursive computer (a, X, /3),
we have the equality

(n/)(«,x) = TTÖ o g* o 4.

check for termination update as often read in initial data
as possible

Since

(w%f)~l n

and

nr1 <T7/, wr+s) n2
f =Wr —> Wr+8 -^—^ » T^r+s -> IF8,

we have that if d is an admissible category which is closed under the
taking of inverses, then a relation ƒ : Wr—*W8 is in Cfc iff the relation
ryf: Wr+8->WQ is in a.

Given the additional lemma that with closures and inverses we can
reconstitute recursions (or left exponentiations) we are prepared to
believe E2 ,s following elegant definitions:

A subcategory C£ of (R(W') is called distinguished if it is admissible
and if it satisfies the following axioms:

1. Unit. The function U: W°->W is in a.
2. Successors. The functions Lx: W—+W are in Q for each x in X.
3. Closure. If/: Wr-*Wr is in a, then so is ƒ*: Wr-»Wr.
4. Inverse. If/: Wr—>W8 is in a, then so isZ"1 : W8-^>Wr.
The class of all distinguished subcategories of (Si{W) will be de­

noted by R(W).
Let T be a class of functions/: Wr—>WS. We then denote by (ftr the

smallest element of R{W') containing T and further set

<pr(ÏF) = (Rr(ïF)n(P(ïn>

The relations in (Rr are called T-recursive. Thus 3^ consists of the
F-recursive functions. As usual, the verification of equivalence with

520 BOOK REVIEWS [July

the earlier definition will be regarded as a standard exercise by the
student with any reasonable background in recursive function theory.

The point of our lengthy discussion is that while E2 's definition
has more algebraic elegance than the standard definition, it seems to
be, if anything, less directly tied to simple principles of digital com­
puter operation. Their definition of R takes us through the first half
of E2 's book. There seems little point in retailing the contents of the
second half. The results contain no surprises and can easily be veri­
fied by standard methods—which is not to deny that the algebra
gives some of the statements a pleasing elegance.

In discussing the book under review with my colleagues, I have
gained the following picture of Eilenberg's mathematical philosophy:
"Mathematical intuition is built not from half-baked verbalisations
and nonmathematical analogies, but rather from the study of austere
and elegant proofs. Thus we must boil down the old treatments of
automata theory, extract the mathematical residue, and polish and
tailor this residue before presenting it to the next generation so that
automata theory will become a truly mathematical subject." With
this approach, one does not seek surprisingly new theorems at this
stagey but simply tries to provide the right algebraic setting on which
later work should build. To the extent that this review is critical it
is because I feel that an important component of a mathematician's
intuition is paramathematical and all traces of this component have
been carefully excised. But this criticism should not blind us to the
fact that such intuitions cannot become mathematics unless refined
by the sort of elegant polishing presented by E2. For example, much
of my work seeks to establish the right setting for automata theory.
However, in stopping when paramathematical intuition seemed
sufficiently developed, I have often given proofs whose roughness an
Eilenberg could rightly decry. Thus, while I would not use E2 as
the text for a course on recursion theory, it would seem to me highly
desirable that a few weeks of such a course be devoted to E2, with
exercises designed to encourage the student to refine his presentation
of proofs, thus complementing the less formal tools he will have
acquired elsewhere in the course.

In short, the book does not touch (save in the one appendix) on the
real meat of recursion theory—the proof of subtle undecidability re­
sults. The algebraic setting is not as general as that given to us by
Rosza Péter, so that the chance is lost to provide the proper setting
for undecidability studies for, say, second-order arithmetic logic or
group theory. The motivation that might allow the computer theorist
to see better how to make the transition back and forth between pro-

I97i] BOOK REVIEWS 521

grams and algebraic theory is completely lacking. But the algebra is
elegant and polished, and one hopes that one day Eilenberg and Elgot
will give us the book promised in their preface.

MICHAEL A. ARBIB

REFERENCES

1962. J. L. Borges, Ficciones, Grove Press, New York, 1962. (translated from the
Spanish).

1964. C. C. Elgot and A. Robinson, Random-access stored-program machines, an
approach to programming languages, J. Assoc. Comput. Mach. 11 (1964), 365-399.
M R 30 #4400.

1967. R. Peter, Rekursive Funktionen, Akad. Kiadó, Budapest, 1951; English
transi., Academic Press, New York; Akad. Kiadó, Budapest, 1967. MR 13, 421; MR
36 #2496.

1967. H. Rogers, Jr., Theory of recursive functions and effective computability,
McGraw-Hill, New York, 1967. MR 37 #61.

1961, 1962. R. Peter, Über die Verallgeimeinerung der Theorie der rekursiven
Funktionen für abstrakte Mengen geigneter Struktur als Definitionsbereiche, Acta Math.
Acad. Sci. Hungar. 12 (1961), 271-314; ibid. 13 (1962), 1-24. MR 25 #15; MR 26
#3601. For a summary in English see "On the generalization of the theory of re­
cursive functions for abstract sets of appropriate structure as domains of definition,"
[Péter, 1967] Appendix.

1963. J. C. Shepherdson and H. E. Sturgis, Computability of recursive functions,
J. Assoc. Comput Mach. 10 (1963), 217-255. MR 27 #1359.

1969. M. A. Arbib, Theories of abstract automata, Prentice-Hall, Englewood Cliffs,
N. J., 1969.

1960. G. Asser, Rekursive Wortfunktionen, Z. Math. Logik Grundlagen Math. 6
(1960), 258-278. M R 24 #A39.

1960. S.-H. Hu, Recursive algorithms. Theory of recursive algorithms. I, Acta Math.
Sinica 10 (1960), 66-88 = Chinese Math. 1 (1962), 64-96. MR 22 #3684a.

1960. Vladeta Vuëkovié, Rekursive Wortarithmetik, Acad. Serbe Sci. Publ. Inst.
Math. 14 (1960), 9-60. MR 23 #A3087.

1965. F . Schwenkel, Rekursive Wortfunktionen über unendlichen Alphabeten, Z.
Math. Logik Grundlagen Math. 11 (1965), 133-147. MR 30 #3845.

Piecewise Linear Topology, by J. F. P. Hudson, Benjamin, New York,
1969.

This volume consists of lecture notes from a course given by Pro­
fessor Hudson at the University of Chicago in 1966-1967. His intent
is "to develop PL theory from basic principles . . .". There are not
many methods available in piecewise linear topology which are
"elementary" in the sense that they do not use bundle theories; and
as applied to manifolds these methods seem by now to have been
pushed to their limits. Hudson has not proved the strongest theorems
possible, but he has demonstrated thoroughly these elementary
methods and their use. His treatment draws heavily on Zeeman's

