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engineering or computer science. As a result, some of the applied parts 
seem to be comparatively more elementary and discursive than the 
theoretical ones. 

As with any text, there will certainly be some disagreement with the 
authors' choice of topics. This may not so much pertain to the algebraic 
material as to the selection of the applications. For instance, the stress 
on algebraic coding theory may be questioned by some readers with 
interests in computer science who might want to see further discussions on, 
for example, the algebraic theory of automata and formal languages 
instead of some material on certain classes of codes. A more objective 
criticism might relate to the chapter on ALGOL, which is somewhat 
weaker than the other chapters in the book. One reason for its inclusion 
was probably the desire to provide a foundation for the ALGOL algo
rithms in later chapters and to discuss some basic aspects of formal lan
guages. Surprisingly, ALGOL procedures are never introduced, and later 
on only the Gaussian elimination algorithm is written in the form of a 
procedure. 

These comments cannot in any way detract from the considerable value 
of the book as a text for various courses of a new and urgently needed type. 
In its entirety the material can be taught as a year course on the advanced 
undergraduate/beginning graduate level, and the preface indicates that at 
Harvard University it is indeed so taught. It should also be possible to 
select appropriate topics for meaningful semester courses. Numerous 
exercises have been included throughout the book which should enhance 
its value as a text even further. 

All in all, this is a significant addition to the mathematics text market, 
which deserves widespread and very thoughtful attention and, hopefully, 
will stimulate in many institutions the introduction of courses following 
its ideas. 

WERNER C. RHEINBOLDT 
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Most mathematics has been developed since 1800, and most history of 
mathematics deals with the period before 1800. We can only guess at the 
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cause of this strange situation, but one simple explanation comes to mind : 
to write, say, the history of Riemann surfaces you first have to understand 
Riemann surfaces. In other words, you must master a sizable field of 
mathematics before you start, whereas extra training is not needed to 
study the history of elementary arithmetic. In any case the imbalance 
exists, and has produced the widespread impression that the history of 
mathematics consists entirely of early calculus, Arabic numerals, and 
n = 22/7. 

The consequence is that most mathematicians know almost nothing 
about the history of the subject. The only familiar source of knowledge is 
names attached to theorems, supplemented by passing references, gossip, 
and obituaries. The Notes Historiques in Bourbaki, brilliant but all too 
brief, have been almost the only reminder that modern mathematics has 
a history. But recently there have been signs of awakening interest, and the 
four books under review, which have all appeared in the last few years, all 
attempt to deal with serious parts of nineteenth century mathematics. 

Lebesgue integration is one of the great success stories of modern 
mathematics, and Hawkins tells it very well. An introductory chapter sets 
the scene, describing how the first rigorous theory of integration took 
shape at the hands of Cauchy and Riemann. We then plunge into fifty years 
of ferment, as men struggle to deal with "assumptionless" functions which 
will not fit the theory. Differentiable functions turn up with bounded 
derivatives which are not (Riemann) integrable; do they satisfy the 
fundamental theorem of calculus? Rectifiable curves are defined without 
assuming differentiability; must we give up the integral formula for arc 
length? To prove uniqueness for trigonometric series we need a term-by-
term integration of a series not converging uniformly; can it be justified? 
Men fall into traps through not understanding the complexity of nowhere-
dense sets, and through confusing them with the sets negligible in integra
tion. The valid theorems have complicated hypotheses and even more 
complicated proofs. At the end of the century Hermite exclaims "I turn 
away with fright and horror from this lamentable plague of functions 
which do not have derivatives." And then the key idea enters from a quite 
unexpected source. 

Emile Borel is the main precursor of Lebesgue integration. The mono
graph developed from his thesis (1898), which lists the basic properties 
that a definition of measure should satisfy, includes countable additivity. 
What prompted this (and formed the second half of the monograph) was 
the study of analytic functions £4i/( z — an) where the {an} form a dense 
subset of a circle. These were attracting attention because, in clarifying the 
definition of function, Weierstrass had shown that a series of rational 
functions could represent one analytic function inside the circle and a 
different one outside. Borel was able to prove that if £l4il1/2 < °° there 
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is a way to define analytic continuation across the circle; in fact, given a 
point inside the circle and another point outside, there is an arc joining 
them along which the series converges uniformly. The heart of the proof 
is the fact that the {an} can be enclosed in intervals of arbitrarily small total 
length, and this led to the definition of sets of measure zero. 

Borel did not connect these ideas with integration, however, and the 
theory created by Lebesgue in his thesis (1902) rightly bears his name. As 
Hawkins emphasizes, the generalized definition of integral was only a 
small part of his accomplishment (W. H. Young thought of almost the 
same idea independently). What makes the thesis so impressive is the way 
it sweeps away difficulties which had piled up for half a century—the 
fundamental theorem of calculus is proved, the arc length integral is re
established, a complicated theorem of Osgood is distilled into a quick 
proof of the dominated convergence theorem. Within a decade the 
Lebesgue integral produced substantial progress in Fourier series, Fubini 
strengthened and simplified earlier results on multiple integrals, and Riesz 
introduced the U spaces. Here the story ends ; the new integral is estab
lished as part of the analyst's toolbox, and Radon introduces the first of 
many generalizations to come. 

Hawkins's style is straightforward and clear. Consistent notation is used 
as much as possible throughout the book, which makes for easy reading. 
I noticed only one slip, an erroneously stated theorem of Young on p. 149. 
This quick summary has had to omit many things, notably differentiability 
theorems, and anyone interested in integration should read the book for 
himself. 

Crowe's book on vector analysis seems a little anemic in comparison, 
perhaps because its title is misleading. The vector differentiation opera
tions are only mentioned in passing, and Stokes's theorem is omitted on 
the grounds that "it essentially lies outside the province of the history of 
vector analysis, for the theorems were all developed originally for Cartesian 
analysis." The subtitle The evolution of the idea of a vectorial system is a 
better description, but even it needs qualification: by "vectorial system" 
Crowe means 3-space with inner product and cross product, and every
thing else is disregarded. He discusses Grassmann's exterior product 
primarily to show how it fails to give a vector result. Differential forms are 
never mentioned, even though Cartan's early papers come within the 
period discussed. Crowe quotes from Grassmann the assertion that m 
linearly independent vectors in an m-dimensional space form a basis; his 
only comment is 'This may be compared with the statement found in 
current vector analysis books that any vector may be expressed in the 
form ai + bj + ck where a, b, c are unique." The turn-of-the-century 
atmosphere becomes almost stifling when we find (p. 123) a reference to 
"the modern treatment of the linear vector function by means of dyadics." 
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Thus the book obviously has a very limited scope. It is not the place to 
find a full discussion of quaternions, or Grassmann, or vector spaces. On 
serious mathematical questions Crowe frequently chooses to quote the 
opinions of others rather than offer his own (perhaps wisely : on p. 30 he 
asserts that quaternion multiplication is anticommutative). He does 
succeed in his goal of tracing the genealogy of the 3-space system, con
cluding that it was developed out of quaternions by physicists. The great 
battle of the 90's was between those who wanted to preserve quaternion 
notation and those who wanted to deal directly with the operations on 
vectors. This produced a number of impassioned polemics which are 
quoted at length and form a piquant contrast to the book's pedestrian 
prose. 

The development of the foundations of mathematical analysis from 
Euler to Riemann is a more substantial subject, and Grattan-Guinness 
writes about it attractively ; but there, unfortunately, the praise must stop. 
He appears to idolize Fourier and loathe Cauchy, which makes his book 
rather like a history of Elizabethan England written by a partisan of Mary 
Queen of Scots. Cauchy is, necessarily, the major figure in most of the 
chapters, and the treatment of him is totally inadequate. For example, on 
pp. 56-58 Grattan-Guinness asserts (without references) that Cauchy 
always believed in infinitesimal quantities h satisfying a + h = a for all 
ordinary numbers a. In fact Cauchy repeatedly and unmistakably says 
that by "infinitely small quantity" he means a variable approaching zero. 
The very section of the Cours d'analyse containing this definition is referred 
to on p. 61—but only for a sneer at "Carnot-style essays on different orders 
of infinitesimals." (Indeed, on p. 60 we are told that "Cauchy failed to 
understand the ideas of Carnot.") Cauchy's "essays" are of course 
correctly proved theorems about orders of vanishing. 

Grattan-Guinness claims, confessedly without documentation, that 
Cauchy saw Bolzano's 1817 paper on the intermediate value theorem and 
took from it both the theorem and the definition of continuity. The argu
ment for this is weakened by the admission (in a footnote on p. 53) that a 
similar definition appeared in the most popular French calculus book 
before Cauchy. In any case it begs the question to simply describe Cauchy's 
proof as "a version of Bolzano's." Bolzano in fact first argues for the 
existence of least upper bounds by repeated bisection, constructing the 
l.u.b. as a convergent series of reciprocal powers of 2; he then finds the 
smallest zero of the function by taking the l.u.b. of the numbers where it is 
negative. Cauchy (beginning a section on numerical solution of equations) 
divides the interval into m equal pieces, chooses a subinterval on which the 
function changes sign, and iterates the process, getting convergent 
sequences of upper and lower bounds for a root together with estimates 
for the accuracy at each stage. 
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Grattan-Guinness goes on to assert that the whole idea of basing 
analysis on the modern concept of limit was taken by Cauchy from 
Bolzano. The tone of the argument can be judged from a sample (p. 78): 
"Needless to say, the name of Bolzano appears nowhere in the Cours 
d'analyse; Cauchy would have had more sense than to make Bolzano's 
work known to his rivals." The assertion in fact seems unlikely, since (1) 
the idea of quantities approaching but not achieving limits is clearly stated 
in the famous Encyclopédie article Limite, which gives the same example 
(inscribed polygons approaching a circle) that Cauchy uses, and (2) Bol
zano's paper does not mention the concept of limit. 

There are several other serious mistakes. Ironically, the book spends 
three pages on Cauchy's construction of integrals and slides over the 
notorious gap (where continuity is tacitly assumed to be uniform) without 
the slightest comment. On p. 70 Grattan-Guinness asserts that "Euler's 
difficulty with series was that he assumed that all methods of summation 
were regular"—italics in the original. No reference is given, and the 
examples mentioned are in fact examples of perfectly regular summation 
methods assigning values to divergent series. 

The opening discussion of Fourier series is muddled by the false state
ment (p. 6) that "Euler's term 'continuous' was synonymous with our 
'differentiable'." Euler in fact called a function "continuous" if it was 
given by a single analytic expression on its whole domain ; thus the func
tion which equals x2 for x ^ 0 and x3 for x < 0 is differentiate but not 
"continuous." Euler apparently believed that his "continuous" functions 
were differentiable, presumably because he could write down formulas for 
their derivatives; but he was wrong. In the case in point, Euler naturally 
thought that Fourier series, being "continuous," could not represent func
tions with corners. Grattan-Guinness' mistake is particularly unfortunate 
here because the old usage of "continuous" is correctly explained on p. 50 
—in the quotation from Cauchy. 

Parts of the book can be salvaged from the wreckage, particularly some 
of the material on series. The importance of Dirichlet's paper on Fourier 
series is properly brought out, and there is an appendix on convergence 
tests which is very nice. Did you know, for instance, that Gauss invented 
an equivalent of Raabe's test when he needed it? Grattan-Guinness' 
comment is worth quoting: "Gauss was indeed the master; and by so much 
was he the master that twenty years had elapsed since the publication of 
his paper before anybody was able to catch up with him. In 1813 hardly 
anyone else understood what the convergence problem was; yet in his 
aloof way, Gauss concentrated only on the further, technical question of 
the convergence of the particular series in which he was interested." 

It is a pleasure to turn to Wussing's book, a sound presentation of 
history wie es eigentlich geschehen, devoted to tracing the different lines of 
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thought which came together in the concept of an abstract group. It comes 
as a surprise to find that the theory of finite abelian groups was developed 
independently, within number theory. There is group-theoretic reasoning 
in Euler, and much more in Gauss (modular arithmetic, roots of unity, and 
above all classes of quadratic forms); drawing on this, and prompted by 
Rummer's study of ideal classes, Kronecker (1870) gave a completely 
abstract proof of the structure theorem for finite abelian groups. 

The primary topic, however, is of course the study of permutation 
groups. Permutations were introduced by Lagrange and Ruffini to study 
algebraic equations, but became a subject in their own right in the work of 
Cauchy. The papers of Galois involved a closer connection with equations, 
and the fundamental importance of groups of permutations became 
established as the implications of Galois's work were realized. This idea is 
basic to Jordan's monumental Traité des substitutions (1870). Although 
Kronecker knew Galois theory, it was curiously not until Netto (1882) that 
commutative permutation groups were seen as a particular case of Kro-
necker's structure theorem. 

The first major generalization was from permutations to geometric 
transformation groups. They appeared most strikingly in Klein's group-
theoretic classification of geometry, the Erlanger Programm(1872); Klein 
then went on to study automorphisms of the regular solids, showing that 
the icosahedral group is isomorphic to the alternating group of order 60 
and deriving the theory of fifth-degree equations. At the same time Lie, in 
close contact with Klein, began his study of continuous transformation 
groups and their connection with differential equations. The final step 
seems to have been taken in an 1882 paper by W. Dyck, a student of Klein 
who cites Netto and gives an abstract definition of group together with 
some comments on generators and relations. A few years later Holder 
showed the value of this abstraction by introducing quotient groups and 
proving the strong form of the Jordan-Holder theorem. 

This summary has omitted an episode strangely reminiscent of Holmes's 
curious incident of the dog in the night-time. ("The dog did nothing in the 
night-time." 'That was the curious incident.") Dyck drew heavily on an 
1878 paper of Cayley, a paper which essentially defines finite groups and 
shows via group tables that they can all be viewed as permutation groups. 
The curious fact is that Cayley had presented many of the same ideas back 
in 1854— and no one, not even Cayley himself, did anything with them. 
In a sense the entire book is an explanation of how an idea which was 
useless in 1854 became essential in 1882. Wussing is fully conscious of this 
theme and what it suggests about mathematical progress. 

The topic of the book is such that less is said about group theory itself 
than about the subjects in which it grew. These discussions are far from 
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perfunctory; the 13 pages on Galois, for instance, are an excellent study of 
the spirit of his work. Wussing always gives enough detail to let us under
stand what each author was doing, and the book could almost serve as a 
sampler of nineteenth century algebra. The bibliography is extremely 
good, and the prose is sometimes pleasantly epigrammatic : "Boole today 
has the notable fame of having been the most underestimated mathema
tician of the 19th century." 

These four books reflect the current state of history of modern mathe
matics ; they point out how little has been done, and exhibit the rewards 
and the risks of pioneering. The subject finally seems to be here to stay, 
since articles have also started to appear (notably in Truesdell's Archive 
for history of exact sciences). At this point an interested and critical 
audience is required, and undoubtedly many mathematicians will develop 
a taste for history now that it is available. As a start, I suggest reading 
Wussing or Hawkins. It won't hurt, it will supply some interesting tidbits 
for your lectures, and you may even decide that history of mathematics 
has something to it after all. 

WILLIAM C. WATERHOUSE 


