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I. Introduction. A model of a physical system in quantum field theory is 
heuristically given as a densely defined bilinear form on a Hubert space Jf. 
An important goal is to determine if the system is Hamiltonian. That is, 
does there exist a selfadjoint operator on some Hubert space whose 
unitary group determines the dynamics of the system? A standard pro­
cedure is to smooth the bilinear form into a densely defined selfadjoint 
operator on X by introducing cutoffs. As the cutoffs are removed one 
attempts to prove that the resulting sequence of operators converges. In 
physically realistic cases, this limiting operator, the renormalized Hamil­
tonian, if it exists at all, can only be defined on a new Hubert space, 3fren, 
orthogonal to the original Jf. Jfren is the space of physical states and may 
arise abstractly through the use of C*-algebra techniques. Cases which 
approximate realistic models and in which Jf = Jfren are useful because 
the familiar nature of X permits a detailed investigation of relevant 
questions, [1], [3], [6]. 

Nelson [8] examined a model of a nonrelativistic spinless nucléon inter­
acting with relativistic neutral scalar mesons in three space dimensions via 
a Yukawa interaction in which the pair creation and annihilation terms 
had been dropped. He was able to define a renormalized Hamiltonian on 
jfren = X = X(R3) = L2(R3) <g) ^(R3) where ̂ {R3) is a symmetric Fock 
space over L2(R3). That is, &(R3) = Xs°°=o^(K3), ^b(^3) = complex 
numbers, ^S(R

3) — the s-fold symmetric tensor product of L2(R3). As is 
pointed out in [8], the methods used are apparently limited to the case 
considered and do not apply if the nucléon has relativistic kinetic energy 
function. In fact, in this case, one must change Hubert spaces [5]. 

The main result of this paper is that if we replace R3 by R2 and use the 
relativistic kinetic energy function for the nucléon, then it is possible to 
define a renormalized Hamiltonian on Jf OR2). The methods we employ 
differ from those of [8]. No special dressing transformations are needed. 
We now make these remarks more explicit. 

II. The polaron with cutoffs. The 1-particle momentum state space for a 
2-dimensional spinless electron or for a neutral scalar phonon is L2{R2\ 
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Jf(R2) is the state space for an electron and many phonons. In this paper 
we prove it is also the state space for a physical polaron. For any m > 0, 
let£m(p) = (|p|2 + m2)1/2.Whenm = 0 = mass of the electron, multiplica­
tion by Ee on L2(R2) defines a selfadjoint operator, H^O). When m = \x 
= mass of the phonon, the quantization [2, p. 223] of H^/J) defines a 
selfadjoint operator H2 on 3F{R}\ 

Let &'m(R2) denote the subspace of ̂ m(R2) consisting of functions which 
are continuous in each variable separately. If ƒ is in $F'm then for almost 
every k in P2, the function fk defined on (R2)m~1 by Mkl9...9km-X) 
= ƒ(&!,..., fem_u k) is in $Fm~ v Define ajk) to be the operator from &m 

to &\n~i with domain D(am(k)) = { /eJ^fc -» ƒ* is continuous from 
P2 -• ^ - i } , and with action on that domain given by am(k)f = m1/2/fc. 
For m = 0 let am(/c) be the zero operator on ^>. Let a(fc) be the operator on 
& given as the direct sum ££=o am(k)- The phonon pointwise annihilation 
operator of momentum fc, a(k)9 is densely defined but not closed. Let Sq 

denote translation on L2(P2) by qeR2; i.e., (Sqg)(p) = g(p - q) for g in 
L2 and p in P2. For each ƒ in L2(P2) there is a unique bounded operator 
K(/):L2 ® ^ -> L2 ® ^ _ ! such that for g in L2 and fc in D(as(k)\ 

K(f)(g ®h) = jf(k)(S-kg ® as(k)h) dk 

where the integral is strong. Let V(f) - £ , % Vu(f\ (V(f) + K(ƒ)*)** 
= Hj(/) is a selfadjoint operator, relatively bounded with respect to 
J(0) = Ht(0) ® I + ƒ ® tf2 and has relative bound zero. Consequently, 
H( f ; 0) sa J(0) + H/ ( ƒ ) is selfadjoint and bounded below and is the Hamil-
tonian for the 2-dimensional polaron with momentum cutoff/. 

Let P\ be multiplication by the îth coordinate function, i = 1,2. Let Pt 

be the quantization of PJ. There is [4] a unitary operator W:Jf(R2) 
-+ L2(R2

9 &(R2)) such that for any h in W (domain ( J(0))) we have 
the formula (WH(f; 6)W-lh)(p) = H2h(p) + £(p - (Pu P2))h(p) 
+ (Mf) + ^* ( / ) )**MP) f°r almost every p in P2. >!(ƒ) is the phonon 
annihilation operator, [2, p. 235]. The total momentum decomposition W 
is independent of ƒ and 0. 

Let H0(f; 0) - H2 + * ( - ( ? ! , P2)) + ( W ) + 4 ƒ))**. tf0(/; 0) is a 
selfadjoint operator which is bounded below and represents the action of 
the Hamiltonian on "states" of zero total momentum. If ƒ is a real radial 
L2 function then inf (spectrum (H0( ƒ ; 0))) is an eigenvalue of multiplicity 1 
and inf(spec(//o(/;0))) = inf (spec(H( ƒ ; 0))), [4]. Let h(f;0) be an eigen­
vector of norm 1. h( ƒ ; 0) is a rest state of zero total momentum. 

III. Removing the cutoff* The object we would like to consider is 
H(E~1/2; 0) which ought to be the Hamiltonian for the physical polaron. 
However, since £~ l / 2 £ L2(P2), V(E~tn) can only be defined on {0}. Never-
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theless, V(E~1/2) is a densely defined bilinear form and consequently so is 
H(E~1/2 ; 0). This is the form mentioned in the Introduction. 

Let g be a real C00 function on Rl that is 1 on ( - £ , ^), has range in [0,1], 
and vanishes outside of [— 1,1]. For every m > 0 let fjk) = E~ 1/2(/c) if 
\k\ < m and for \k\ ^ m, let fjk) = E~ 1/2(k)g(i + \k\ - m). For each suf­
ficiently large m, there is a 6m such that inf(spec(#( fm ; 9m))) = 0. Hm 

= H(fm;9m) is the Hamiltonian with cutoff /w after mass renormalization. 
Lethm = h(fm;6m). 

THEOREM. There is a nonnegative, selfadjoint operator, H^, densely 
defined on Jt(R2) such that strong limit f(Hm) = /(H^) as m -• oo where 
either(\)f(x) = (x + r)"\r > 0;or(2)/(x) = eitx,treal;or(3)f(x) = *"'*, 
r ^ 0, for some sequence {m}. 

The proof of (2) and (3) follows directly from (1), [7, p. 502]. The proof of 
( 1 ) depends on the fact that {hm}% = 0 lies in a norm compact subset of ^(R2). 
This in turn depends on the estimate ||tf(fci)... a(kt)hm\\ <*Y[Ui E~3l2(ki\ 
first derived informally by Gross [5], using the nonnegativity of Hn and 
the commutation relations of H„ with a(k). Similar techniques show that 
the maps k -> a(k)hm are continuous with compact support and have partial 
derivatives in coordinate directions which are uniformly bounded on com­
pact sets. Consequently the finite particle components of hm have similar 
properties. If JVt, 1 > T > 0, denotes the quantization of multiplication by 
El on L\R2\ then the above estimate shows that supm||(iVT)1/2/*J| < oo. If 
h^ is any limit point of {hm}, it also follows that h^ is an entire vector for 
the total number of phonons operator and is in the domain of NT

1/2. Also 
(h^ 1) > 0 where 1 G ^0. 

For a any C00 function on R2 with sufficiently small support about the 
origin define ha in L2(R2,2F) by ha(p) = OL^h^- Applying an irreducible 
algebra of operators to ha yields a dense subset on which {(Hm 4- r)~xW~1} 
converges strongly for all r > 0 and some subsequence {m} of {1,2, . . .} . 
Let R(r) be the strong limit. To show it is the resolvent of a nonnegative 
selfadjoint operator we need only prove the null space of R(r) is 0. This 
follows from the fact that strong l i m , ^ rR(r) = Identity.1 
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