A GENERALIZATION OF THE HELLY SELECTION THEOREM

BY KEITH SCHRADER

Communicated by Victor Klee, November 16, 1971

1. **Introduction.** In this paper we consider sequences $\{y_k\}$ of real valued functions defined on an interval I. We are interested in finding conditions which when satisfied by the sequence $\{y_k\}$ guarantee the existence of a subsequence of $\{y_k\}$ which converges pointwise on I. With this in mind we make the following definition.

DEFINITION 1.1. Let $f: I \to R$ and consider the set \mathscr{P} of all finite nonempty partitions $P = \{x_1, x_2, \dots, x_n\}$ of I where $n \ge 1$ and $x_1 < x_2 < \dots < x_n$. We denote by T(f) the oscillation of f on I and define it by

$$T(f) = \sup_{P \in \mathscr{P}} \left\{ \sum_{i=1}^{n} |f(x_i)| : (-1)^i f(x_i) > 0 \ \forall i$$
 or $(-1)^i f(x_i) < 0 \ \forall i \text{ or } (-1)^i f(x_i) = 0 \ \forall i \right\}.$

For a function f which is nonnegative on I the oscillation of f on I, T(f), is the supremum of f on I. It is not the case, however, that the set of f for which T(f) is finite forms a Banach space with norm T(f) since closure under addition is not satisfied. It is also not the case that the set of f for which T(f) is finite forms a metric space with metric given by d(f, g) = T(f - g) because the triangle inequality is not satisfied.

Our main result, for which we give a number of applications later, is the following.

THEOREM 1.2. Let $\{y_k\}$ be such that $y_k: I \to R$. If $T(y_k - y_j) \le M$ for all k, j then $\{y_k\}$ contains a subsequence which converges pointwise on I.

The original motivation for this theorem comes from the study of boundary value problems. In [3] the author showed, among other things, that if $\{y_k\}$ is a uniformly bounded sequence of continuous real valued functions defined on an interval I having the property that there exists a positive integer N such that y_k and y_j are not equal at more than N values of x for $k \neq j$ then y_k contains a subsequence which converges at every point in I. This result is a corollary of Theorem 1.2. A more complete description of the connection between such convergence theorems and the

AMS 1969 subject classifications. Primary 4020; Secondary 3436. Key words and phrases. Sequences of functions, pointwise convergence.

study of boundary value problems may be found in [3] along with a list of references.

2. Preliminary results. We begin by stating a known result due to Ramsey which we will refer to repeatedly. This result and its proof may be found in [1, Theorem A] or [2, Theorem A, p. 82].

THEOREM 2.1. Let Γ be an infinite class, u and r positive integers; and let all those subclasses of Γ which have exactly r members, or, as we may say, let all r-combinations of the members of Γ be divided in any manner into u mutually exclusive classes C_i ($i=1,2,\ldots,u$), so that every r-combination is a member of one and only one C_i . Then, assuming the Axiom of Selections, Γ must contain an infinite subclass Δ such that all the r-combinations of the members of Δ belong to the same C_i .

COROLLARY 2.2. If $\{f_k\}$ is any sequence of real valued functions defined on an interval J then either there is a subsequence $\{h_j\}$ of $\{f_k\}$ such that $\{h_j\}$ is a monotone sequence on J or else there is a subsequence $\{h_j\}$ of $\{f_k\}$ such that if $i \neq j$ there are $t, \tau \in J$ depending on i, j with $h_i(t) > h_j(t)$ and $h_i(\tau) < h_i(\tau)$.

PROOF. If there are only finitely many functions in $\{f_k\}$ which are distinct on J then infinitely many are identical on J and we are done. Thus we may assume there are infinitely many functions in $\{f_k\}$ which are distinct on J and, by picking a subsequence if necessary, we may assume all the f_k are distinct. Let u = r = 2 and $\Gamma = \{f_k\}$. Let $C_1 = \{\{f_k, f_j\} : k \neq j, f_k(t) \leq f_j(t) \ \forall t \in J \ \text{or} \ f_k(t) \geq f_j(t) \ \forall t \in J \ \text{and} \ C_2 = \{\{f_k, f_j\} : k \neq j, f_k(t) > f_j(t) \ \text{for some} \ t \in J \ \text{and} \ f_k(\tau) < f_j(\tau) \ \text{for some} \ \tau \in J \ \text{The result now follows from Theorem 2.1.}$

COROLLARY 2.3. If $\{f_k\}$ is any sequence of real valued functions defined on an interval J and $\varepsilon > 0$ is any number then either there is a subsequence $\{h_j\}$ of $\{f_k\}$ such that, for $i \neq j$, $|h_j(t) - h_i(t)| < \varepsilon$ for all $t \in J$ or else there is a subsequence $\{h_j\}$ of $\{f_k\}$ such that, for $i \neq j$, $|h_j(t) - h_i(t)| \ge \varepsilon$ for some $t \in J$ depending on i, j.

PROOF. As in the proof of Corollary 2.2 we may assume the f_k are all distinct on J or we are done. Let $\Gamma = \{f_k\}$, u = r = 2, $C_1 = \{\{f_k, f_j\}: k \neq j, |f_k(t) - f_j(t)| \leq \varepsilon \$ for some $t \in J\}$. The result now follows from Theorem 2.1.

3. **Proof of Theorem 1.2.** For $x \in I$ we have $|y_k(x)| \le |y_k(x) - y_1(x)| + |y_1(x)| \le M + |y_1(x)|$ so the sequence $\{y_k\}$ is pointwise bounded and hence any monotone subsequence of $\{y_k\}$ is convergent.

Let $\{J_i\}$ be an enumeration of all the nonempty open intervals contained in I with rational endpoints.

It follows from Corollary 2.2 applied to J_1 that either there is a subsequence of $\{y_k\}$, again denoted by $\{y_k\}$, which is monotone and convergent on J_1 or else there is a subsequence of $\{y_k\}$, again denoted by $\{y_k\}$, such that, for $k \neq j$, $y_k(t) > y_j(t)$ and $y_k(\tau) < y_j(\tau)$ for some $t, \tau \in J_1$. We now repeat the process described in the previous sentence consecutively on the intervals J_2, J_3, \ldots and then take the diagonal subsequence, denoted by $\{y_k\}$ again. This sequence has the property that on any of the intervals J_i it is either monotone on J_i for k sufficiently large and hence converges on J_i or else for every $k \neq j$ sufficiently large there are $t, \tau \in J_i$ such that $y_k(t) > y_i(t)$ and $y_k(\tau) < y_i(\tau)$.

Now using J_1 and $\varepsilon=1$ it follows from Corollary 2.3 that either there is a subsequence of $\{y_k\}$, again denoted by $\{y_k\}$, such that, for $k\neq j$, $|y_k(t)-y_j(t)|<\varepsilon=1$ for all $t\in J_1$ or else there is a subsequence of $\{y_k\}$, again denoted by $\{y_k\}$, such that if $k\neq j$ there is some $t\in J_1$ for which $|y_k(t)-y_j(t)|\geq \varepsilon=1$. We now repeat this process consecutively on J_1 using $\varepsilon=1/2, \varepsilon=1/3,\ldots, \varepsilon=1/n,\ldots$ and then take the diagonal subsequence, again denoted by $\{y_k\}$. This sequence has the property that for J_1 and $\varepsilon=1/n$ either for all $k\neq j$ sufficiently large $|y_k(t)-y_j(t)|<\varepsilon=1/n$ holds for all $t\in J_1$ or else for all $t\in J_1$ with $|y_k(t)-y_j(t)|\geq \varepsilon=1/n$.

We now repeat the entire process described in the preceding paragraph consecutively on the intervals J_2, J_3, \ldots and then take the diagonal subsequence, again denoted by $\{y_k\}$. This sequence has the property that for J_i and $\varepsilon = 1/n$ then either for every $k \neq j$ sufficiently large, depending on i and n, $|y_k(t) - y_j(t)| < \varepsilon = 1/n \quad \forall t \in J_i$ or else for every $k \neq j$ sufficiently large, depending on i and i

We will now show using proof by contradiction that $\{y_k\}$ converges at all but countably many values of $x \in I$. For $x \in I$ such that $\{y_k(x)\}$ is not convergent let $\{F_{xi}\}$ be the subsequence of $\{J_i\}$ consisting of the intervals which contain x. There must be a smallest positive integer n_{xi} such that $|y_k(t) - y_j(t)| \ge \varepsilon = 1/n_{xi}$ for all $k \ne j$ sufficiently large for some $t \in F_{xi}$ or else $\{y_k\}$ is Cauchy on F_{xi} and hence converges at x which would contradict the choice of x. If $\overline{\lim}_{i \to +\infty} n_{xi} = +\infty$ then there is a subsequence $n_{xi(\alpha)}$ of $\{n_{xi}\}$ such that $\lim_{\alpha \to +\infty} n_{xi(\alpha)} = +\infty$ and by the definition of $n_{xi(\alpha)}$ we have $|y_k(t) - y_j(t)| < 1/(n_{xi(\alpha)} - 1)$ for all $k \ne j$ sufficiently large and all $t \in F_{xi(\alpha)}$. This implies $\{y_k(x)\}$ is Cauchy which contradicts the choice of x, so $\overline{\lim}_{i \to +\infty} n_{xi} = c_x < +\infty$. Let $d_x > c_x$ be an upper bound for the set $\{n_{xi}\}$.

If there are uncountably many x at which $y_k(x)$ is not convergent then there is some number d so that $d_x \le d$ holds for uncountably many x at which $\{y_k(x)\}$ does not converge. Denote this uncountable set of x's by A. Choose N so that N(1/d) > M. Now choose $u(1) \in A \cap I^0$ and

 $F_{u(1)i(1)} \in \{F_{u(1)i}\}$ such that $(I - F_{u(1)i(1)}) \cap A$ is uncountable. Choose $u(2) \in (I - F_{u(1)i(1)}) \cap (A \cap I^0)$ and $F_{u(2)i(2)} \in \{F_{u(2)i}\}$ such that $F_{u(1)i(1)}$ $\cap F_{u(2)i(2)} = \emptyset$ and $(I - (F_{u(1)i(1)} \cup F_{u(2)i(2)})) \cap A$ is uncountable. Continuing in this way we get $\{u(1), u(2), \dots, u(2N+1)\}$ in $A \cap I^0$ and $\{F_{u(1)i(1)}, F_{u(2)i(2)}, \ldots, F_{u(2N+1)i(2N+1)}\}$ which are mutually disjoint. By renaming the points u(i) we may assume $u(1) < u(2) < \cdots < u(2N + 1)$. Now we choose $k \neq j$ fixed but sufficiently large that for each odd positive integer α , $1 \le \alpha \le 2N + 1$, $|y_k(x) - y_j(x)| \ge \varepsilon = 1/n_{u(\alpha)i(\alpha)}$ holds for some $x(\alpha) \in F_{\mu(\alpha)i(\alpha)}$ and for each even positive integer α , $2 \le \alpha \le 2N$, $y_k(t_\alpha)$ $> y_j(t_\alpha)$ holds for some $t_\alpha \in F_{u(\alpha)i(\alpha)}$ and $y_k(\tau_\alpha) < y_j(\tau_\alpha)$ holds for some $\tau_{\alpha} \in F_{u(\alpha)i(\alpha)}$. Consider the partition $P_0 = \{\beta_1, \beta_2, \dots, \beta_n\}$ where $\beta_{\alpha} = x(\alpha)$ if α is odd; β_{α} is omitted from P_0 if α is even and $y_k(x(\alpha-1)) - y_j(x(\alpha-1))$ and $y_k(x(\alpha + 1)) - y_j(x(\alpha + 1))$ have opposite signs; β_{α} is taken to be t_{α} if $y_k(x(\alpha - 1)) - y_j(x(\alpha - 1)) < 0$ and $y_k(x(\alpha + 1)) - y_j(x(\alpha + 1)) < 0$; β_α is taken to be τ_{α} if $y_k(x(\alpha-1)) - y_j(x(\alpha-1)) > 0$ and $y_k(x(\alpha+1))$ $-y_i(x(\alpha+1)) > 0$. We observe this implies that $T(y_k - y_i) \ge N(1/d) > M$ for this fixed $k \neq j$ which contradicts the hypotheses of the theorem.

We conclude that $\{y_k\}$ converges for all but countably many values of x and hence a subsequence can be chosen which converges at every point.

COROLLARY 3.1. Let $\{y_k\}$ be a sequence of real valued functions defined on a nonempty set $S \subset R$. If $T(y_k - y_j) \leq M$ for all k, j (where partition points are taken in S instead of I) then $\{y_k\}$ contains a subsequence which converges pointwise on S.

PROOF. Define $\{z_k\}$, $z_k: R \to R$ by

$$z_k(x) = y_k(x),$$
 $x \in S,$
= 0, $x \notin S,$

then $T(z_k - z_j) = T(y_k - y_j) \le M$ so Theorem 1.2 applies.

COROLLARY 3.2 (Helly Selection Theorem). Let $\{y_k\}$ be a sequence of functions of bounded variation with $y_k:[a,b] \to R$ and let there exist a number K such that $|y_k(x)| \le K$ for $k=1,2,\ldots$ and $x \in [a,b]$ and such that $V_a^b(y_k) \le K$ for $k=1,2,\ldots$ where $V_a^b(y_k)$ is the variation of $\{y_k\}$ on [a,b]. Then there exists a subsequence of $\{y_k\}$ which converges at every point.

PROOF. $T(y_k - y_j) \le 2K + V_a^b(y_k - y_j) \le 2K + V_a^b(y_k) + V_a^b(y_j) \le 4K$. In fact, the limit function is of bounded variation but we are not concerned with that here.

COROLLARY 3.3. Let $\{y_k\} \in C(I)$ and $D_{kj} = \{x : x \in I, |y_k(x) - y_j(x)| > 0\}$. Then we know that $D_{kj} = \bigcup_{n=1}^{+\infty} I_{kjn}$ where each I_{kjn} is a relatively open interval in I and $I_{kjn} \cap I_{kjm} = \emptyset$ for $n \neq m$. If $\sum_{n=1}^{+\infty} \sup_{x \in I_{kjn}} |y_k(x) - y_j(x)|$

 $\leq M$ for all k, j then $\{y_k\}$ contains a subsequence which converges at each point of I.

COROLLARY 3.4. Let $y_k \in C(I)$ and K a fixed positive integer such that $\{x: x \in I, |y_k(x) - y_j(x)| > 0\}$ contains no more than K components for each k, j. If $|y_k(x)| \le H$ holds, for $x \in I$ and k = 1, 2, ..., then $\{y_k\}$ contains a subsequence which converges at every point of I.

PROOF. $T(y_k - y_i) \leq KH$.

REFERENCES

- 1. F. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1930), 264-286.
- 2. _____, The foundations of mathematics, Harcourt Brace, New York, 1931.
 3. K. Schrader, A pointwise convergence theorem for sequences of continuous functions, Trans. Amer. Math. Soc. 159 (1971), 155-163.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI 65201