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Let £ denote the class of functions F(Q = Ç + a0 + aJC + • • • regular 
in 1 < ICI < oo. In this paper the radius of convexity for the subclass Sa 

defined by the additional condition Re F'(() > a, where 0 ^ a < 1, is 
determined. The results are sharpened for functions with missing terms 
in the expansion. The proofs are based on inequalities for analytic func
tions established by the author [3]. The functions F(Q are not assumed 
to be schlicht ; in fact, the extremal functions for a < \ will not be schlicht. 
It is not known whether the univalence of F(Q follows from the condition 
Re F'(C) > \ for Rc > |C| > R > 1. The radius of convexity (Rc ~ 1.78) 
for the class Z with the assumption of schlichtness is due to Goluzin 
[1, p. 136]; Robertson [2, Theorem 4] found Rc = 31 / 2 for the subclass 
of schlicht and starlike functions. It will be shown that: for the class 
S1/2,RC = 3 1 / 2 ; and Rc < 3 1 / 2 for a > \. 

THEOREM 1. The radius of convexity, R0, for functions F(Ç) e Ea is given 
by 

(1) R2o S {[(3 + c)2 + 4c]1'2 + (3 + c)}/2 

where c — 1 — 2a. 

PROOF. Let 

(2) h(z) = F(l /z) = 1 + b,z2 + •••. 

From [4, Theorem 7], we have 

^ Z ^ - *,«"-<'• 
By differentiation of (2) we obtain 

zh'(z)/h(z)= -ÇF"(0 /F(0 . 

The condition for convexity Re(CF"(Ç)/F'(Ç) + 1) ^ 0 will be satisfied if 

2(1 + c)|z|2 S (1 + c\z\2)(l - \z\2). 

This is equivalent to |Ç| > R0. 
Let p°(z) = (1 + cz2)/(l - z2\ then F°(Ç) = Ç + [(c +1)/2] [log(C- l)/(f +1)] 
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will have Re(CF"(0/F'(0 + 1) = 0 for ( = R0. We have F°(Q = 
f - ( c + l ) / C + -.-. 

If c > 0, i.e., a < \, \ax\ > 1 and F°(Q is not schlicht. 

COROLLARY . For the special case, Re F'(() > 0, we have c = 1 and 
i*0 = [51/2 + 2]l/2;for ReF'(Ç) > i c = 0 and R0 = 31/2. 

THEOREM 2. Let F(Q € 2a /zat;e t/ie expansion F(Ç) = Ç + a0 + <*«/£" + 
a„+ 1/C

W+ * + • • • t/îen the radius of convexity 

Rl+i = {[(„ + 2 + nc)2 + 4c]1/2 + [n + 2 + nc]}/2. 

The proof is similar to Theorem 1, based on the inequality [4] 

\h'(z)/h(z)\ g (1 + c)n|z|"-7[1 - (1 - c)|z|" - e|z|2"] 

for functions with expansion h(z) = 1 + c„zn + . . . , n ^ 1. 
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