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1. Introduction. The purpose of this note is to announce some results 
regarding the existence of euclidean subrings of global fields. 

We first state the problem and give its history. Let F be a global field. 
So F is a finite extension of the rational numbers g or F is a function field 
of one variable over a finite field /c, where k is algebraically closed in F. 
Let S be a finite nonempty set of prime divisors of F such that S includes 
all infinite (i.e., archimedean) prime divisors. If P is a finite (i.e., nonarchi-
medean) prime divisor we denote by 0P its valuation ring in F. Now, given 
a finite set S of the above type, we get a ring 

os = n °p 
where P ranges over all prime divisors of F. We note in particular that if 
F is a number field and S the set of infinite prime divisors of F then Os 

is just the ring of F-integers. 
It is easy to see that there always exists a finite set S satisfying the above 

hypothesis such that Os is a unique factorization domain. Hence it seems 
natural to ask the following two questions : 

I. Does there always exist an S such that Os is a euclidean ring? 
II. Can one find an algorithm on Os for suitably chosen S which is 

related in some way to the arithmetic of the field F? 
The history of the above two questions is as follows : In a series of 

articles [l]-[4] Armitage discussed I and II for function fields over 
arbitrary ground fields. He insisted on a choice of algorithm related to the 
norm from F to a rational subfield. He showed that if the ground field of F 
is infinite, then an algorithm of his spacial type was possible if and only if 
the genus of F is zero. He also discussed the case when the ground field 
of F is finite, but again the only situation in which he gave a positive answer 
to I was when F is of genus zero. In [6], Samuel also discussed I for function 
fields F with arbitrary fields of constants, but here also he did not get above 
genus zero. Finally, in [5], M. Madan and the present author showed that 
the answer to both I and II is yes for function fields of genus one over 
finite fields. The method in [5] was to specifically construct an S and an 
algorithm on Os for given F. 
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In the next section we indicate a proof that the answer to both I and II 
is yes for arbitrary global fields F. Full details of the proof and applica
tions of the results will appear elsewhere. 

2. Results. Let F be a global field. If F is a finite prime divisor of F we 
denote by N(P) the absolute norm of P and we associate with each such P 
a normalized valuation | |P as follows : \0\P = 0 and if x e F — {0} = F*, 
then \x\p = N(P)~n, where Pn is the power to which P appears in the 
principal divisor (x) determined by x in F. Now if P is an infinite prime 
divisor then P corresponds to an embedding oP of F into the complex 
numbers and we determine a normalized valuation | |P associated to P 
in the following way: If oP{F) is a subfield of the real numbers then |x|P 

== |o>(x)| for all x e F, where | | is the ordinary real absolute value. Finally 
if GP(F) is not a subfield of the reals, we set |x|P = |crP(x)|2 for all x e F , 
where | | is the usual complex absolute value. Hence letting P range over 
all prime divisors of F, we have the well-known formula 

(i) n i 4 = i 
p 

for all xe F*. 
If P is a prime divisor of F we denote by FP the completion of F with 

respect to the valuation | |P. These fields FP are all locally compact and if 
P is finite we denote by RP the maximal compact subring of F P . We call 
the restricted topological product of the FP with respect to the RP the ring 
of adeles of F and denote it by FA. We further identify F with its diagonal 
embedding in FA. 

Now if F is a number field we denote by S^ the set of infinite prime 
divisors of F and if F is a function field over a finite field we fix a prime 
divisor P^ of F and set Sœ = {Pœ}. Next if x e F* we set 

V(x) ={Ce FA\ \CP\p < \x\P for P e Sœ and |CP|P g |x|P for P £ S J . 

THEOREM 1. 

FA = U M*) + n 
xeF* 

INDICATION OF PROOF. If F is a function field and k its exact field of 
constants we use the Riemann-Roch theorem to choose t e F such that 
F/k{t) is a separable extension and \t\Paa > 1, with |t|P ^ 1 for all P ^ P^. 
If F is a number field we let H denote the field of real numbers and other
wise H will denote /c((£-1)), where /c((t-1)) is the quotient field of the ring 
of formal power series in t~x over k. Next we set Fœ = F ®LH, where 
L = Q if F is a number field and L = k(t) otherwise. Viewing F^ as a 
topological algebra over H we identify it with the subalgebra of FA, 
Ylpes^Fp-
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Setting X = F œ x Y\péSo0 Rp, we observe that FA = X + F (see [7]). 
Let {a>l9..., œn} be an integral basis of F over L with respect to T, where F 
is the ring of rational integers if F is a number field and otherwise T = k[t\ 
Finally we show that if £ e X, then there exist q,pu... ,pneT such that 
q =£ 0 and qÇ — (p1œ1 + • • • + pnœn) has the property that 

\(qC - {p1œ1 + • • • + pno)n))p|P < 1 for P e Sœ 

and 
|(gC - (PiCOi + • • • + pncon))P\P ^ 1 for F <£ S*,, 

i.e., C G F ^ - 1 ) ^ - F. Q.E.D. 
Let S be a finite set of prime divisors of F such that S 3 S^. We define 

a function cps from F to the nonnegative real numbers given by (ps(x) 
= Y\pes \x\p- We note that, in view of (1), (ps is integral valued when 
restricted to 0S. Further in the case when F is a number field and S = S^, 
then, for all x e F, (ps(x) = \NF/Q(x)\. Also when F is a function field, then 
for any choice of S ^ Sœ, there exist yeF — k such that 0S is the integral 
closure of k[y\ in F and, for all x e F, (/>s(x) = INF/ZCMMIOO* where | 1̂  is 
the valuation associated to the pole divisor of y in k(y) and normalized 
as above. 

THEOREM 2. There exists a finite set S of prime divisors of F such that 
S ^ S^ and Os is euclidean with respect to the map (ps. 

INDICATION OF PROOF. By Theorem 1, FA = \JxeF*(V{x) + F). Now 
by compactness of FJF (see [7]) and the fact that V(x) is open in FA for 
every x e F, there exist xl9...,xreF* such that 

FA = Ü WW + F)-

Finally we show that if S = {P\P e S^ or there exist i0, l S h = r s u c r i 

that \xio\P ± 1}, then S is a finite set, S ^ S^ and Os is euclidean with 
respect to cps. 
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