EUCLIDEAN SUBRINGS OF GLOBAL FIELDS ${ }^{1}$

BY CLIFFORD S. QUEEN
Communicated by Hyman Bass, October 20, 1972

1. Introduction. The purpose of this note is to announce some results regarding the existence of euclidean subrings of global fields.

We first state the problem and give its history. Let F be a global field. So F is a finite extension of the rational numbers Q or F is a function field of one variable over a finite field k, where k is algebraically closed in F. Let S be a finite nonempty set of prime divisors of F such that S includes all infinite (i.e., archimedean) prime divisors. If P is a finite (i.e., nonarchimedean) prime divisor we denote by O_{P} its valuation ring in F. Now, given a finite set S of the above type, we get a ring

$$
O_{S}=\bigcap_{P \notin S} O_{P}
$$

where P ranges over all prime divisors of F. We note in particular that if F is a number field and S the set of infinite prime divisors of F then O_{S} is just the ring of F-integers.

It is easy to see that there always exists a finite set S satisfying the above hypothesis such that O_{S} is a unique factorization domain. Hence it seems natural to ask the following two questions:
I. Does there always exist an S such that O_{S} is a euclidean ring?
II. Can one find an algorithm on O_{S} for suitably chosen S which is related in some way to the arithmetic of the field F ?

The history of the above two questions is as follows: In a series of articles [1]-[4] Armitage discussed I and II for function fields over arbitrary ground fields. He insisted on a choice of algorithm related to the norm from F to a rational subfield. He showed that if the ground field of F is infinite, then an algorithm of his spacial type was possible if and only if the genus of F is zero. He also discussed the case when the ground field of F is finite, but again the only situation in which he gave a positive answer to I was when F is of genus zero. In [6], Samuel also discussed I for function fields F with arbitrary fields of constants, but here also he did not get above genus zero. Finally, in [5], M. Madan and the present author showed that the answer to both I and II is yes for function fields of genus one over finite fields. The method in [5] was to specifically construct an S and an algorithm on O_{S} for given F.

[^0]In the next section we indicate a proof that the answer to both I and II is yes for arbitrary global fields F. Full details of the proof and applications of the results will appear elsewhere.
2. Results. Let F be a global field. If P is a finite prime divisor of F we denote by $N(P)$ the absolute norm of P and we associate with each such P a normalized valuation $\left.\left|\left.\right|_{P}\right.$ as follows: $| O\right|_{P}=0$ and if $x \in F-\{0\}=F^{*}$, then $|x|_{P}=N(P)^{-n}$, where P^{n} is the power to which P appears in the principal divisor (x) determined by x in F. Now if P is an infinite prime divisor then P corresponds to an embedding σ_{P} of F into the complex numbers and we determine a normalized valuation $\left|\left.\right|_{P}\right.$ associated to P in the following way: If $\sigma_{P}(F)$ is a subfield of the real numbers then $|x|_{P}$ $=\left|\sigma_{P}(x)\right|$ for all $x \in F$, where $|\quad|$ is the ordinary real absolute value. Finally if $\sigma_{P}(F)$ is not a subfield of the reals, we set $|x|_{P}=\left|\sigma_{P}(x)\right|^{2}$ for all $x \in F$, where $|\mid$ is the usual complex absolute value. Hence letting P range over all prime divisors of F, we have the well-known formula

$$
\begin{equation*}
\prod_{P}|x|_{P}=1 \tag{1}
\end{equation*}
$$

for all $x \in F^{*}$.
If P is a prime divisor of F we denote by F_{P} the completion of F with respect to the valuation $\left|\left.\right|_{P}\right.$. These fields F_{P} are all locally compact and if P is finite we denote by R_{P} the maximal compact subring of F_{P}. We call the restricted topological product of the F_{P} with respect to the R_{P} the ring of adeles of F and denote it by F_{A}. We further identify F with its diagonal embedding in F_{A}.

Now if F is a number field we denote by S_{∞} the set of infinite prime divisors of F and if F is a function field over a finite field we fix a prime divisor P_{∞} of F and set $S_{\infty}=\left\{P_{\infty}\right\}$. Next if $x \in F^{*}$ we set

$$
V(x)=\left\{\left.\zeta \in F_{A}| | \zeta_{P}\right|_{P}<|x|_{P} \text { for } P \in S_{\infty} \text { and }\left|\zeta_{P}\right|_{P} \leqq|x|_{P} \text { for } P \notin S_{\infty}\right\}
$$

Theorem 1.

$$
F_{A}=\bigcup_{x \in F^{*}}(V(x)+F) .
$$

Indication of proof. If F is a function field and k its exact field of constants we use the Riemann-Roch theorem to choose $t \in F$ such that $F / k(t)$ is a separable extension and $|t|_{P_{\infty}}>1$, with $|t|_{P} \leqq 1$ for all $P \neq P_{\infty}$. If F is a number field we let H denote the field of real numbers and otherwise H will denote $k\left(\left(t^{-1}\right)\right)$, where $k\left(\left(t^{-1}\right)\right)$ is the quotient field of the ring of formal power series in t^{-1} over k. Next we set $F_{\infty}=F \otimes_{L} H$, where $L=Q$ if F is a number field and $L=k(t)$ otherwise. Viewing F_{∞} as a topological algebra over H we identify it with the subalgebra of F_{A}, $\prod_{P \in S_{\infty}} F_{P}$.

Setting $X=F_{\infty} \times \prod_{P \notin \mathrm{~S}_{\infty}} R_{P}$, we observe that $F_{A}=X+F$ (see [7]). Let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be an integral basis of F over L with respect to Γ, where Γ is the ring of rational integers if F is a number field and otherwise $\Gamma=k[t]$. Finally we show that if $\zeta \in X$, then there exist $q, p_{1}, \ldots, p_{n} \in \Gamma$ such that $q \neq 0$ and $q \zeta-\left(p_{1} \omega_{1}+\cdots+p_{n} \omega_{n}\right)$ has the property that

$$
\left|\left(q \zeta-\left(p_{1} \omega_{1}+\cdots+p_{n} \omega_{n}\right)\right)_{P}\right|_{P}<1 \quad \text { for } P \in S_{\infty}
$$

and

$$
\left|\left(q \zeta-\left(p_{1} \omega_{1}+\cdots+p_{n} \omega_{n}\right)\right)_{P}\right|_{P} \leqq 1 \quad \text { for } P \notin S_{\infty}
$$

i.e., $\zeta \in V\left(q^{-1}\right)+F$. Q.E.D.

Let S be a finite set of prime divisors of F such that $S \supseteq S_{\infty}$. We define a function φ_{S} from F to the nonnegative real numbers given by $\varphi_{S}(x)$ $=\prod_{P \in S}|x|_{P}$. We note that, in view of (1), φ_{S} is integral valued when restricted to O_{S}. Further in the case when F is a number field and $S=S_{\infty}$, then, for all $x \in F, \varphi_{S}(x)=\left|N_{F / Q}(x)\right|$. Also when F is a function field, then for any choice of $S \supseteq S_{\infty}$, there exist $y \in F-k$ such that O_{S} is the integral closure of $k[y]$ in F and, for all $x \in F, \varphi_{S}(x)=\left|N_{F / k(y)}(x)\right|_{\infty}$, where $\left|\left.\right|_{\infty}\right.$ is the valuation associated to the pole divisor of y in $k(y)$ and normalized as above.

Theorem 2. There exists a finite set S of prime divisors of F such that $S \supseteq S_{\infty}$ and O_{S} is euclidean with respect to the map φ_{S}.

Indication of proof. By Theorem 1, $F_{A}=\bigcup_{x \in F^{*}}(V(x)+F)$. Now by compactness of F_{A} / F (see [7]) and the fact that $V(x)$ is open in F_{A} for every $x \in F$, there exist $x_{1}, \ldots, x_{r} \in F^{*}$ such that

$$
F_{A}=\bigcup_{i=1}^{r}\left(V\left(x_{i}\right)+F\right) .
$$

Finally we show that if $S=\left\{P \mid P \in S_{\infty}\right.$ or there exist $i_{0}, 1 \leqq i_{0} \leqq r$ such that $\left.\left|x_{i_{0}}\right|_{P} \neq 1\right\}$, then S is a finite set, $S \supseteq S_{\infty}$ and O_{S} is euclidean with respect to φ_{S}.

References

1. J. V. Armitage, Euclid's algorithm in certain algebraic function fields, Proc. London Math. Soc. (3) 7 (1957), 498-509. MR 20 \# 30.
2. - Corrigendum and Addendum: "Euclid's algorithm in algebraic function fields", J. London Math. Soc. 43 (1968), 171-172. MR 37 \# 2727.
3. - , On unique factorization in algebraic function fields, Illinois J. Math. 11 (1967), 280-283; Appendix, Illinois J. Math. 12 (1968), 5-6. MR 35 \# 172; MR 36 \# 5113.
4. ——, Euclid's algorithm in algebraic function fields. II, Acta Arith. 18(1971), 337-348.
5. M. Madan and C. Queen, Euclidean function fields, J. Reine Angew. Math. (submitted).
6. P. Samuel, About Euclidean rings, J. Algebra 19 (1971), 282-301. MR 43 \#6190.
7. A. Weil, Basic number theory, Die Grundlehren der math. Wissenschaften, Band 144, Springer-Verlag, New York, 1967. MR 38 \# 3244.

Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015

[^0]: AMS (MOS) subject classifications (1970). Primary 12A05; Secondary 12A05.
 Key words and phrases. Euclid's algorithm, adeles, global fields.
 ${ }^{1}$ Added in proof. After this announcement went to press, the author discovered that Theorem 2 was proved by O. T. O'Meara in On the finite generation of linear groups over Hasse domains, J. Reine Angew. Math. 217 (1965), 79-108. MR 31 \# 3513.

