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ABSTRACT. A fixed point theorem is given for mappings of scaled 
metric spaces. This theorem applies to the Cauchy problem for partial 
differential equations, to singular differential equations, and to the 
Goursat problem. 

1. Introduction. In this note we give a fixed point theorem for a class of 
mappings of a space with a two-parameter scale of metrics. This theorem 
contains as special cases the classical Cauchy-Kovalevska theorem (see 
Rosenbloom [6], [7]), as well as the generalizations of Ovsjannikov [3], 
Treves [9], and Duchateau and Treves [1]. It can also be applied to some 
classes of partial differential equations such as those treated by Rosen-
bloom [8], to the Goursat problem, and to other cases of the Riquier 
problem (see [4], [5]). 

We shall say that {drJr, s e (0,1]} is a scale of metrics on the space S if 
each drs is a metric on S, and drs is nondecreasing in each of the variables r 
and s. If A is a subset of S, then we denote by Ars the completion of A 
with respect to dr>s. For a > 0, we shall denote by <5?>s the metric 

#fS(ti, t>) = r* sup p~adp>s(u,v). 
0 < p ^ r 

Let c be a function on R+ = {x\x > 0} to R+, let ju, v e R+. We shall say 
that Tis a mapping of class K(c, fi, v) if, for 0 < r ^ 1,0 < s < a ^ 1, Tis 
a mapping of Sra into Srs and satisfies 

(1) dr>s(Tu, Tv) g C(n^ SIM v) 
c{n + ju)((J - sy 

for u,veS,n > 0. For any X > 0 we denote by AA the metric 

AA = supKJr" ^ A(l - sf} 

and by A(X) the completion of the set A with respect to AA. 

THEOREM. Suppose that {drtS} is a scale of metrics on S and Tis a mapping 
of class K(c, ju, v), and that the power series 
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00 

(2) F(X) = c(a) X nnxkn/c(z + n/i) 
« = o 

has the radius of convergence R, 0 < R ^ + oo. Then, for any a > 0 and any 
«o^S such that jS0 = ^^(Ttto, u0) < + oo, t/iere is a fixed point uofT in 
f) {S(X)\k < R} such that <5* s(u, u0) <> p0X",flF(X) for r"/(l - s)v = À < R. 
There is no other fixed point v in any of the spaces S(X),X < R, such that 
ôyjv, u0) < + oo for some r,se (0,1]. 

2. Sketch of proof. Let un = Tnu0. If r"/(l - s)v = A, then we can easily 
prove by induction that 

(3) <*r>» + i, un) ̂  P0c(oc)nnvraXn/c((x + nix) 

for n ^ 0. We use (1) with a = (1 + ns)/(l + n). The convergence of un to a 
fixed point u, in the metric AA, A < K, and the above estimates now follow. 

Let T00 be the mapping defined by Tœu = l i rn ,^ Tnu. Then T00 is 
defined on the set Aa = {u\ueS, à\A{Tu, u) < + oo}, and maps 4a into 
f]{S(X)\À < R}. The same inductive argument shows that if veAa, 
<5ï,i(w> v) < +oo, then AA(r°°M, T^v) = 0. Hence the equivalence relation 

u = av<r+ ôa
itl(u, v) < + oo 

divides ,4a into equivalence classes each of which is associated with a 
unique fixed point T°°w of T The last assertion can be obtained by con
sidering the scale drtS = darM for any a, b e (0,1]. 

The equivalence class of u in ,4a is a "boundary value" of w, of order a 
with respect to the given scale on S. 

3. The Cauchy-Kovalevska theorem. Let Q be a domain in CN, let ô(x) 
be the distance from x to the complement of Q, and suppose that ô(x) 
g fe < + oo for all x e Q. Let S be the space of continuous functions on the 
interval / = [0,1] to B(Q), the space of bounded analytic functions on Q to 
CM. We set drs(u, v) = ||u - t?||rtS, where 

||n||r,a = sup{|ti(t,x)| |0 ^ tS r,S(x) > (1 - s)k}. 

Then drfS is a scale of metrics on S. We may take 

(Tu)(t9x) = T(iu)-1 f (t - %y-\Lu){T,x)d%, 
Jo 

where L is a linear differential operator of order v from J5(Q) to B(Q) with 
coefficients continuous on /. Then T is of class X(c, ju, v) for a certain c, 
and (2) is satisfied if v S \i. If ju is a positive integer, then we obtain the 
classical Cauchy-Kovalevska theorem. 

As in [7] we may replace CN and CM by general Banach spaces X and U. 
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We remark that if L is an analytic partial differential and S is any Banach 
space of analytic functions on Q to U and the scale is defined in terms of 
norms on S, then our condition (1) on T (or the Duchateau-Treves con
dition (1.5)) implies that L is linear. Hence neither our present theorem nor 
that of Duchateau and Treves [1] contains directly the theorems for non
linear analytic equations given in [7], [8], and [9]. If we only assume that T 
satisfies (1) in some ball such as {u\Ax(u, u0) ^ 1}, then the inductive proof 
of (3) fails since the choice of a may take us out of the set on which (1) holds. 
Our version of the majorant method in [7] (which can be made more 
abstract as done by Treves [9]) yields a space S which is transformed into 
itself by T, and this implies that T satisfies (1) on S (see the proof of Theorem 
2 in [7]). It is not obvious how such a result can be obtained without some 
variant of the majorant method. Of course, if we use scales defined in terms 
of such spaces of C00 functions as the Gevrey classes, then we can give 
genuinely nonlinear operators which satisfy (1), as is done in [1]. 

4. Singular partial differential equations. In [8] we showed that a quite 
general linear equation with a regular singularity at t = 0 can be reduced 
to the form 

(4) tut - B(x)u = tLu, w(0, x) = 0, 

where 

Lu = D(t, x) + E(t, x)u + C(t, x)ux. 

We shall assume that B is analytic and bounded in a domain Q <= X, 
where X is a Banach space, with values in P = Uv. (We shall denote by Uv 

the space of bounded linear transformations of V to U.) We shall assume 
that D, E, and C are analytic and bounded on QK = CK x Q, CK = {t\ 
| t | < K } , K > l , with values in U,P,UV, where V=UX. If g(t,x) 
= Z °̂=i an(x) fWl is analytic on QK to (7, then the solution operator 
I I = Agof 

tut — B(x)u = tg, u(0, x) = 0 

is 
00 

u(t,x) = X (nI - B(x))~1an(x)tn. 

We shall assume that, for some b and all x e Q, n > 0, 

I K n J - B W n i ^ / n . 

(This is true if the distance from the spectrum of B{x) to the set of positive 
integers is bounded away from zero.) We may define T = A L. We can take 
S as the space of bounded analytic functions u o n Q t to U, and define 
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drtS(u,v) = \\u - i4)S, where, for u = Xaw(x)tw, 

IMIr.. = sup{r"||nM(x)|| |n ^ 0, ô(x) > (1 - s)k}. 

It is easy to verify that Te K(c, 1,1) with c(ri) = bnT{n + 1) for a certain 
b > 0, so that R = h/e. 

These conditions also apply to many cases where B(x) is an unbounded 
operator. Suppose B(x) generates a strongly measurable semigroup 
{0(T, x)} of type a>(x), uniformly bounded on Q (see Hille and Phillips [2]) 
such that 0(T, X)U C= D(B(X)) for T > 0, x e Q. Suppose L is as above with 
coefficients continuous in t for t ^ 0 and analytic in Q, and suppose they 
satisfy inequalities of the form 

\\D{t, x)\\ S e~atM for t ^ 0, x 6 Q, 

for some a > supxeQ co(x). Then the transformation 

(Tu)(t, x) = <D(T - £, X)(LM)(T, X) dx 

satisfies (1) for a suitable scale of metrics. The fixed point u = T°°0 is the 
unique solution of 

du/dt = B(x)u — Lu 

satisfying ||M(£> X)|| = 0(e"at) as t -• + oo, and is analytic in a domain of 
the form A < e*5(x) for a certain positive constant A. 

We leave the discussion of the Goursat problem to a fuller report of our 
work, now in preparation. 
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