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In 1922 there appeared A proof and extension of the Jordan-Brouwer 
separation theorem by J. W. Alexander. This work was a major influence 
in the flowering of algebraic topology which occurred in the ensuing 
fifty years. It contained a duality theorem algebraically similar to, but 
geometrically different from, the classical Poincaré duality theorem. In 
establishing the equality of the ith Betti number of a complex embedded 
topologically in an «-sphere and the (rc-i-l)st Betti number of its comple
ment, Alexander indicated in this paper how homology theory could 
arise in open and closed sets. This set the stage for algebraic topology in 
metric space, a line of investigation vigorously pursued by Alexandroff, 
Cech, Viet oris, and Wilder. 

There were far reaching algebraic consequences. The theorems of 
Alexander and Poincaré essentially asserted the isomorphism of pairs of 
finitely generated abelian groups, the groups in each pair reflecting 
geometric properties in dual dimensions. This started a search for a 
purely algebraic theorem which embodied the group theoretic relations 
inherent in the geometrical settings of the two duality theorems. The 
relevant result was found by Pontrjagin (cf. L. Pontrjagin, Über den 
algebraischen Inhalt topologischer Dualitàtssâtze, Math. Ann. 105 (1931).) 
The association of Betti groups with open and closed sets leads to the 
problem of classifying abelian groups with countably many generators. 
Alexander dealt with this problem during 1931-1935, and found an 
appropriate decomposition of such groups into direct summands. In 
this investigation Alexander initiated the application of topological 
groups to algebraic topology (cf. L. Pontrjagin, The general topological 
theorem of duality for closed sets, Ann. of Math. 35 (1934).) 

Alexander went on to find a role for ring theory in topology. Earlier 
Lefschetz had studied intersections of geometrical i-chains and («-i)-
chains on «-manifolds, exploiting Poincaré's theorem. Alexander con
sidered the linking of geometrical i-cycles on a complex in an «-sphere 
with (rc-i-l)-cycles in its complement. It turned out that in both cases 
multiplication of the algebraic counterparts of these geometrical entities 
was the appropriate technique, and that the homology groups could be 
embedded in rings which yielded new invariants. This work of Alexander 
was simultaneous with the same results obtained by Kolmogorov, both 
men reporting their results at the First International Topological Con
ference in Moscow, 1935. These beginnings were further developed by 
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Whitney (cf. Hassler Whitney, On products in a complex, Ann. of Math. 39 
(1938). It contains an illuminating historical note on p. 398), and pointed 
the way to cohomology theory which is algebraically dual to the theory of 
homology. 

Alexander extended his duality theorem to a class of sets in Hubert 
space. His last works included the application of his connectivity ring to 
abstract spaces and to topology in a lattice. Besides work on his major 
themes Alexander produced a fixed point theorem, a topological 2-sphere 
whose complement in 3-space is not simply connected, contributions to 
the theory of knots, and, in an early paper (1915), a theorem on univalent 
functions which is still being quoted. 

Alexander's mathematical life was lived in Princeton where he carried 
on the topological tradition established by Veblen. He was a student at 
the university, receiving its B.S. (1910), A.M. (1911), and Ph.D. (1915). 
From 1911 to 1933 Alexander was a member of the Princeton faculty, 
resigning to accept a professorship in The Institute for Advanced Study. 
He was elected to the National Academy of Sciences, Washington, in 
1930. In 1947 the universities in Bologna and Paris honored him with 
their D.Sc. 

In an expository style which is lucid, spare and comfortable, Alexander 
left a work marked by ideas and methods which have borne rich mathe
matical fruit. 
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