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Introduction. Results in definability theory which are about a fixed 
structure are called "local" by Reyes [R], An example is Scott's defin­
ability theorem [Sc]. In contrast, "global" results are about the class of 
models of a sentence (theory); an example is Svenonius' theorem [Sv]. 
Note that the straight analogue for L^^ of Svenonius' theorem, if true, 
would be a global generalization of Scott's theorem, i.e., the latter would 
be obtained by applying the former to the Scott sentence of the given 
structure. Although this generalization is false, Motohashi [Mo] has 
found a totally satisfactory global generalization of Scott's theorem (his 
result is explained below). 

We give two distinct global generalizations of a local weak-definability 
theorem by Kueker [Ku 1] and Reyes [R] (Theorems 1 and 2 and 
Corollary (A)) and one for Kueker's local theorem in [Ku 1] on structures 
with only countably many automorphisms (Theorem 3 and Corollary 
(E)). In Theorems 2 and 3, we utilize Motohashi's work. Theorem 4 is 
related to [Ku2]. 

1. Results. L denotes a fixed countable language, LWlC0 the finite-
quantifier logic with countable conjunctions and disjunctions based on 
L. P is an additional predicate symbol, L^^P) is the corresponding 
extension of LWlC0. 21 and (91, P) denote structures for Lmia> and L^JP), 
resp. Following [Ku 1], we write Ma{S&) for {P: (81, P) N a} and M(9t, P) 
for {Q: (91, g) is isomorphic to (81, P)}. \X\ is the cardinality of X. 

THEOREM 1. For any sentence a in Lœi(0(P), (i) o (ii). 
(i) For every countable 81, |Mff(9l)| ^ K0 (or, equivalently, <2**°). 

(ii) For some formulas (pn(x, un) (n < œ) of Lœi(0, 

<r N V 3iT V*[P5c <-• <pH(5t, M")]. 

Theorem 1 is a direct analogue of the weak-definability theorem for 
finitary logic of Chang [C] and the author [ M a i ] , as improved by 
Reyes [R] for countable structures. In fact, our proof gives the result for 
all admissible fragments of Lœia) (with the whole formula after " | = " in 
(ii) being in the fragment). A similar remark applies for our subsequent 
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results. Taking G to be the Scott sentence of (91, P), we obtain 

COROLLARY (A) (KUEKER [KU 1], REYES [R]). |M(9I, P)\ S N0 iff 
|M(9I, P)\ < 2Ho iff for some finitely many elements a of A, P is definable 
in (9C, a) by an L^^-formula with the parameters a. 

Our next two theorems utilize work of Motohashi [Mo]. 
Let X9 Y be disjoint infinite sets of variables, x, xh . . . denote variables 

from X; y, yt, . . . from Y; x, x\ . . . vectors of x's, similarly for y, f. 
DEFINITION (MOTOHASHI [ M O ] ) . A formula 6 in LœiJP) is called a 

Motohashi formula (M-formula) if every atomic subformula of 0 is of the 
form either n(x) or n(y) with 7i(-) in Lfôû) or else Py. 

The following are easily seen. 

PROPOSITION (B) ( [ M O ] ) . Afinitary M-formula 0(x) is logically equivalent 
to a finitary formula oftheform/\i<n [o^ -» (Pi(x)~\, Gt sentences in Lœ(0(P), 
cpt(x) in Lœa,. 

(C) For given countable (91, P), 6(x, y) an M-formula, a0 elements of A, 
0(x, a0) is equivalent in (91, P, a0) to an Lœ(0-formula <p(x) without 
parameters. 

To obtain cp in (C), convert in 9 each ^-quantifier, Vy • • • y • • • into 
AflgA **•£ ' • ' , with a a new constant for a e ,4, and similarly for 3y. Then 
replace each resulting atomic formula n(a), Pa by its actual truth-value 
in(9l ,P). 

THEOREM (D) (MOTOHASHI [ M O ] ) . For any a in LmiJP)9 (i) o (ii). 
(i) For all (or, for all countable) (91, P) *= a, |M(9I, P)\ = 1. 

(ii) a N Vx[Px <-> 0(x)] /or some M-formula 6(x). 

By (C), (ii) obviously implies (i). (D) can be proved by an application of 
Feferman's many-sorted interpolation theorem [F]. This proof as well 
as Motohashi's proof in [Mo] gives the result for all admissible fragments 
of LWlC0. Hence by (B), (D) implies Svenonius' theorem [Sv]. Also by (C), 
(D) implies Scott's definability theorem [Sc] (apply (D) for the Scott 
sentence a of (91, P)). 

THEOREM 2. For any sentence a in L^^P), (i) <=> (ii). 
(i) For all countable (91, P) N or, we have |M(9I, P)\ S K0 (or, <2*°). 

(ii) a N V;<co l&fi V^[Pi <-» 6t(x, x\ f)] for some M-formulas 6 t(i < œ). 

By (C), (ii) obviously implies (i). For the same reason, Theorem 2 
specializes to (A) if G is the Scott sentence of (91, P). By (B), Theorem 2 
for finitary logic is a form of the weak-definability theorem [C], [Ma 1], 
[R]. As Motohashi [Mo] shows, conditions (i) in Theorems 1 and 2 are 
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not equivalent for L^^P), unlike in the finitary case. In fact, even (i) in 
(D) does not imply (i) in Theorem 1. 

THEOREM 3. For any sentence a in L^^ , (i) o (ii). 
(i) For all countable 91 \= er, 91 has at most countably many (or equiva-

lently, less than 2Xo) automorphisms. 
(ii) G \= Vi<co 3*T Vy Vx[x = y <-» 0.(x, y, %\ f)~\ for some M-formulas 

6t (i < œ) without P. 

By Proposition (C), in any given 91, the part after "V)>" of the formula 
in (ii) implies that y is definable in 91 with the parameters x\ Hence 
Theorem 3 has the following 

COROLLARY (E) (KUEKER [KU 1]). For any countable 91, 91 has at most 
countably many [less than 2K°) automorphisms iff there are some finitely 
many elements a of A such that every element of A is definable in (91, a) by 
an L^^-formula. 

The finitary version of Theorem 3 is, via (B), the well-known result that 
every finitary sentence with infinite models has a countable model with 
2Xo automorphisms. 

Our last result utilizes, and adds to, Kueker's work on "finite general­
izations" of Beth's theorem [Ku 2] . 

THEOREM 4. For any G in LCOl£0(F), (i) <=> (ii). 
(i) For all (or, for all countable) 91, |Mff(9I)| < X0. 

(ii) o N yn<lo l^ncpn(v
n) A Vvn[cp(d») - Vi<„ Vx[Px «- cpnA(x, vn)JJ] 

for some (pnJ(X, dn) in Lmim. 

2. Proofs. The proofs use abstract consistency properties (see [Ke], 
[Ma 2], [Ma 3]) and in case of Theorems 2 and 3, approximation of 
automorphisms by finite pieces similarly as in the proofs in [Ma 3] . We 
will show the proof of Theorem 2 in some detail. 

Proof of Theorem 2. Let C be a countably infinite set of new individual 
constants. Define T2 to be the collection of objects y = <s, fi}ieI such 
that s is a finite set of sentences of Lct)lco(P)(C) in negation normal form 
(n.n.f.) with only finitely many constants from C, / is a finite set, each f 
is a finite subset of C x C, and such that (the main condition) there is no 
formula JX with (i)2(y, pt) where: 

0)2(7^ A*) A* is °f th e f ° r m °f t n e formula after " | = " in Theorem 2(h) 
and whenever (9Ï, P, c)ceC is a model of s and, for i e I, gt is an automor­
phism of 91 such that <c, d} G f => <c, J> e gh then 91 |= fi. 

Suppose G is in n.n.f. and it does not satisfy (ii) in Theorem 2. Then 
clearly y0 = d f ( { d } , 0 ) belongs to T2. We successively extend this element 
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of T2, always remaining in T2, such that the limit of the procedure yields, 
in a natural way, a model (21, P) with |M(Sl, P)\ = 2Xo. 

LEMMA (ii). For fixed I and ft (i e / ) , {s: <s, / ) f e / G T2} is an abstract 
consistency property. 

(iii) For any y = <s, /£> i e z e T2, j e I, c e C, let d ^ c and let d not 
occur in y. Then 

<s*fi,fjV {<c,d>}>iei-u} and <s , / f , / , -u « J , c » > / e / _ 0 } 

belong to T2. 

Comment, (iii) will be used to make sure that the domains and ranges of 
purported automorphisms will indeed be the whole domain (in this case, 
essentially C) of the structure. 

(iv) Let y and i be as in (iii). Let c9 du d2 be distinct constants in C but 
not in y. Put f- = f} u {<d?l9 c>}, f) == / u {<J2, c>} a«rf s' = s u 
{Pdu iPd2}. Theny' = <s ' , / , ƒ},/ ;> i e /_U } G T2. 

Comment, (iv) is used to "split" a finite approximation / into two. 
Eventually the infinite paths of the tree of such approximations will be 
the automorphisms and they will give us 2Xo images of P. Note that for 
"extensions" g\, g". of/;, ƒ J', resp., "g\P # g'!P". 

PROOF OF (iv). Introduce new operation symbols gt (i e I). The assump­
tion that y' <£ T2 leads to the existence of p' with (i)2(y', / / ) . Let £ be the 
formula —iju' A A s A /\ieI "gt is an L-automorphism extending / " . 
By (i)2(/, p% 

(v) (21, P, c, flFi)ciny,ie/ •= £ implies that every automorphism of 
OH> c)cedomy. leaves P fixed. 

Hence by (an inessential strengthening of) (D), 
(vi) £ t= Vx[Px 4-* 0(x, c)] for c = dom / and for some Motohashi 

formula #(i,jc\v'). Hence £ t= p" where p" = 3x'y'Vx[Px<r-> 0(x,x',y')"]. 
It follows that 

(i)2(y, p' v / / ) holds, contrary to y e T2. 
Now, let /„ be the set of finite 0-1 sequences of length n. Let C = 

{cn: n < co}. We construct a sequence yn (n < co) of elements of T2 

starting with y0 = <{<r}, 0 > such that yn = <s„,/?> i e /n , s„ c sw + 1, 
ƒ? c / » + 1 for; = i ^ <0>, i ^ <1> and 

(vii) sw = (J sn is pseudocomplete (see 1.3 Definition in [Ma 2]) or, 
what is the same, the sn satisfy (l)-(5) on p. 13 in [Ke] (here we use (ii)), 

(viii) cn G dom / " + * n rn /" + x (i e In) (here we use (iii)), and 
(ix) for each n and i e /„, there are d0 G dom f"*l, dx e dom ƒ " + * and 

c G rn/n
j0

+ * n rn/J* x (here ; 0 = * ^ <0>, j , = / ^ <1» such that {Pd0, 
—iP^i} c sw + 1 (here we use (iv)). 
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For the canonical model (21, P, c)ceC of s^ (see the proof of the model 
existence theorem in [Ke], or 1.4 in [Ma 3]) we have 

(X) 21 |= (7, 
(xi) the maps fa = {<c, d}: <c, d} e \J f^n} for a e °°2 are auto­

morphisms of 21 (mainly by (viii)) and 
(xii) faP =£ fa.P for a # a' by (ix). Q.E.D. 
O N THE PROOF OF THEOREM 1. The collection playing the role of T2 

above, I \ , is defined as follows. Let Pf denote distinct predicate symbols 
of the same arity as P, and let us write s(Pi) for a set of sentences in 
^ö>ia>e\*XC). Let Aj be the set of sentences of the form 

V V 3wn Vx[Pfx «-> ^ ( x , wM)] 

where the ç>j, are in LWlC0. We define r x to be the collection of objects 
y — <5/(Pi)>fe/ with similar finiteness conditions as for T2 and such that 
there is no \i with (i)i(y, \x) where: 

(i)i(y, **) J" e A, and Q J e j s^P,) f= ji. 
The crucial fact analogous to (iv) above is that for y as above, and a 

fixed j e I, if we put s}(P}) = d f SJ{P'J) u {F/r}, sJ(Py) = d f s/PJ) u { iPJc} 
with c e C a constant not in y, then <sf(Pf), s (̂P}), sJ(PJ)>ie/_U} again 
belongs to 1^, The proof of this applies the Beth-Lopez-Escobar theorem. 

O N THE PROOF OF THEOREM 3. It is very similar to that of Theorem 2 
and applies a corollary to (D): if every model of a has no nontrivial auto­
morphisms, then a t= Vy Vx[x = ); <-> 0(x, y)] for some M-formula 6 
without P. 

O N THE PROOF OF THEOREM 4. Let us call a formula of the form after 
" N " in Theorem 4 (ii) a X-formula. Consider <r = cr(P) not satisfying 
(ii). Define T4 = S4 to be the set of sets s(P0, . . . , Pn-i) of sentences of 
LCOia)(P0, . . . , P n - i ) (C) with the usual finiteness conditions such that for 
any K-formula K(P), S & G(P) -> K(P). The crucial property of S4 is that 
if seS4 is as above then s u {a(Pn), "P„ # P / ' , "Pw ^ P 2 " , . . . , 
"P„ ^ P„-1"} belongs to S4. Also, S4 is an abstract consistency property. 

ADDED IN PROOF (May 2,1973). Jon Barwise noticed that Theorem 1 re­
mains true if we replace a by a £}-over-LwlG)(P) sentence 3Sa{P, S). A 
similar remark holds for the rest of the theorems too. In fact, no essential 
change is required in the proofs. Barwise also noticed that from the I J 
generalization of Theorem 1 in the "admissible version," the following 
strengthening of a theorem due to J. Harrison results immediately: If a 
E{ set of reals does not contain a perfect subset, it is a subset of a set 
constructible below cof (Kleene's cot) (notice that our proof gives in fact a 
perfect subset of Mff(2l)). Subsequently, the author noticed that the X} 
generalization of Theorem 1 (formulated with "perfect subset") combined 
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with an approximation theorem of Vaught (any constructible IlJ-over-
LWiC0 sentence is equivalent for countable structures to Va<©i ^a with 
some constructible sequence <<5a:a < co^ of LWlC0-sentences) directly 
(and without the use of forcing) gives Mansfield's theorem: any ^L\ set 
of reals not containing a perfect subset is constructible. 
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