GLOBAL DEFINABILITY THEORY IN $L_{\omega_1\omega}^{-1}$

BY M. MAKKAI

Communicated by A. H. Lachlan, February 23, 1973

Introduction. Results in definability theory which are about a fixed structure are called "local" by Reyes [R]. An example is Scott's definability theorem [Sc]. In contrast, "global" results are about the class of models of a sentence (theory); an example is Svenonius' theorem [Sv]. Note that the straight analogue for $L_{\omega_1\omega}$ of Svenonius' theorem, if true, would be a global generalization of Scott's theorem, i.e., the latter would be obtained by applying the former to the Scott sentence of the given structure. Although this generalization is false, Motohashi [Mo] has found a totally satisfactory global generalization of Scott's theorem (his result is explained below).

We give two distinct global generalizations of a local weak-definability theorem by Kueker [Ku 1] and Reyes [R] (Theorems 1 and 2 and Corollary (A)) and one for Kueker's local theorem in [Ku 1] on structures with only countably many automorphisms (Theorem 3 and Corollary (E)). In Theorems 2 and 3, we utilize Motohashi's work. Theorem 4 is related to [Ku 2].

1. **Results.** L denotes a fixed countable language, $L_{\omega_1\omega}$ the finite-quantifier logic with countable conjunctions and disjunctions based on L. P is an additional predicate symbol, $L_{\omega_1\omega}(P)$ is the corresponding extension of $L_{\omega_1\omega}$. $\mathfrak A$ and $(\mathfrak A, P)$ denote structures for $L_{\omega_1\omega}$ and $L_{\omega_1\omega}(P)$, resp. Following $[\mathbf K\mathbf u\ 1]$, we write $M_{\sigma}(\mathfrak A)$ for $\{P\colon (\mathfrak A, P)\models\sigma\}$ and $M(\mathfrak A, P)$ for $\{Q\colon (\mathfrak A, Q) \text{ is isomorphic to } (\mathfrak A, P)\}$. |X| is the cardinality of X.

THEOREM 1. For any sentence σ in $L_{\omega,\omega}(\mathbf{P})$, (i) \Leftrightarrow (ii).

- (i) For every countable \mathfrak{A} , $|M_{\sigma}(\mathfrak{A})| \leq \aleph_0$ (or, equivalently, $<2^{\aleph_0}$).
- (ii) For some formulas $\varphi_n(\vec{x}, \vec{u}^n)$ $(n < \omega)$ of $L_{\omega_1 \omega}$,

$$\sigma \models \bigvee_{n < \omega} \exists \vec{u}^n \ \forall \vec{x} [P\vec{x} \leftrightarrow \varphi_n(\vec{x}, \vec{u}^n)].$$

Theorem 1 is a direct analogue of the weak-definability theorem for finitary logic of Chang [C] and the author [Ma 1], as improved by Reyes [R] for countable structures. In fact, our proof gives the result for all admissible fragments of $L_{\omega_1\omega}$ (with the whole formula after " \models " in (ii) being in the fragment). A similar remark applies for our subsequent

AMS (MOS) subject classifications (1970). Primary 02B25, 02H10.

¹ Research supported by the National Research Council of Canada.

results. Taking σ to be the Scott sentence of (\mathfrak{A}, P) , we obtain

COROLLARY (A) (KUEKER [Ku 1], REYES [R]). $|M(\mathfrak{U}, P)| \leq \aleph_0$ iff $|M(\mathfrak{U}, P)| < 2^{\aleph_0}$ iff for some finitely many elements \vec{a} of A, P is definable in (\mathfrak{U}, \vec{a}) by an $L_{\omega_1\omega}$ -formula with the parameters \vec{a} .

Our next two theorems utilize work of Motohashi [Mo].

Let X, Y be *disjoint* infinite sets of variables. x, x_i , . . . denote variables from X; y, y_i , . . . from Y; \vec{x} , \vec{x}^i , . . . vectors of x's, similarly for \vec{y} , \vec{y}^i .

DEFINITION (MOTOHASHI [Mo]). A formula θ in $L_{\omega_1\omega}(P)$ is called a Motohashi formula (M-formula) if every atomic subformula of θ is of the form either $\pi(\vec{x})$ or $\pi(\vec{y})$ with $\pi(\cdot)$ in $L_{\omega\omega}$ or else $P\vec{y}$.

The following are easily seen.

PROPOSITION (B) ([Mo]). A finitary M-formula $\theta(\vec{x})$ is logically equivalent to a finitary formula of the form $\bigwedge_{i < n} [\sigma_i \to \varphi_i(\vec{x})]$, σ_i sentences in $L_{\omega\omega}(P)$, $\varphi_i(\vec{x})$ in $L_{\omega\omega}$.

(C) For given countable (\mathfrak{A}, P) , $\theta(\vec{x}, \vec{y})$ an M-formula, \vec{a}^0 elements of A, $\theta(\vec{x}, \vec{a}^0)$ is equivalent in $(\mathfrak{A}, P, \vec{a}^0)$ to an $L_{\omega\omega}$ -formula $\varphi(\vec{x})$ without parameters.

To obtain φ in (C), convert in θ each y-quantifier, $\forall y \cdots y \cdots$ into $\bigwedge_{a \in A} \cdots \underline{a} \cdots$, with \underline{a} a new constant for $a \in A$, and similarly for $\exists y$. Then replace each resulting atomic formula $\pi(\underline{a})$, $P\underline{a}$ by its actual truth-value in (\mathfrak{A}, P) .

Theorem (D) (Motohashi [Mo]). For any σ in $L_{\omega,\omega}(P)$, (i) \Leftrightarrow (ii).

- (i) For all (or, for all countable) $(\mathfrak{A}, P) \models \sigma, |M(\mathfrak{A}, P)| = 1$.
- (ii) $\sigma \models \forall \vec{x} [P\vec{x} \leftrightarrow \theta(\vec{x})]$ for some M-formula $\theta(\vec{x})$.

By (C), (ii) obviously implies (i). (D) can be proved by an application of Feferman's many-sorted interpolation theorem [F]. This proof as well as Motohashi's proof in [Mo] gives the result for all admissible fragments of $L_{\omega_1\omega}$. Hence by (B), (D) implies Svenonius' theorem [Sv]. Also by (C), (D) implies Scott's definability theorem [Sc] (apply (D) for the Scott sentence σ of (\mathfrak{A}, P)).

Theorem 2. For any sentence σ in $L_{\omega_1\omega}(P)$, (i) \Leftrightarrow (ii).

- (i) For all countable $(\mathfrak{A}, P) \models \sigma$, we have $|M(\mathfrak{A}, P)| \leq \aleph_0$ (or, $<2^{\aleph_0}$).
- (ii) $\sigma \models \bigvee_{i < \omega} \exists \vec{x}^i \vec{y}^i \ \forall \vec{x} [P\vec{x} \leftrightarrow \theta_i(\vec{x}, \vec{x}^i, \vec{y}^i)]$ for some M-formulas $\theta_i(i < \omega)$.

By (C), (ii) obviously implies (i). For the same reason, Theorem 2 specializes to (A) if σ is the Scott sentence of (\mathfrak{A}, P) . By (B), Theorem 2 for finitary logic is a form of the weak-definability theorem [C], [Ma 1], [R]. As Motohashi [Mo] shows, conditions (i) in Theorems 1 and 2 are

not equivalent for $L_{\omega_1\omega}(P)$, unlike in the finitary case. In fact, even (i) in (D) does not imply (i) in Theorem 1.

THEOREM 3. For any sentence σ in $L_{\omega_1\omega}$, (i) \Leftrightarrow (ii).

- (i) For all countable $\mathfrak{A} \models \sigma$, \mathfrak{A} has at most countably many (or equivalently, less than 2^{\aleph_0}) automorphisms.
- (ii) $\sigma \models \bigvee_{i < \omega} \exists \vec{x}^i \vec{y}^i \ \forall y \ \forall x [x = y \leftrightarrow \theta_i(x, y, \vec{x}^i, \vec{y}^i)]$ for some M-formulas θ_i $(i < \omega)$ without P.

By Proposition (C), in any given \mathfrak{A} , the part after " $\forall y$ " of the formula in (ii) implies that y is definable in \mathfrak{A} with the parameters \vec{x}^i . Hence Theorem 3 has the following

COROLLARY (E) (KUEKER [Ku 1]). For any countable \mathfrak{A} , \mathfrak{A} has at most countably many (less than 2^{\aleph_0}) automorphisms iff there are some finitely many elements \vec{a} of A such that every element of A is definable in (\mathfrak{A}, \vec{a}) by an $L_{\omega_1\omega}$ -formula.

The finitary version of Theorem 3 is, via (B), the well-known result that every finitary sentence with infinite models has a countable model with 2^{\aleph_0} automorphisms.

Our last result utilizes, and adds to, Kueker's work on "finite generalizations" of Beth's theorem [Ku 2].

THEOREM 4. For any σ in $L_{\omega_1\omega}(\mathbf{P})$, (i) \Leftrightarrow (ii).

- (i) For all (or, for all countable) \mathfrak{A} , $|M_{\sigma}(\mathfrak{A})| < \aleph_0$.
- (ii) $\sigma \models \bigvee_{n < \omega} \left[\exists \vec{v}^n \varphi_n(\vec{v}^n) \wedge \forall \vec{v}^n [\varphi(\vec{v}^n) \rightarrow \bigvee_{i < n} \forall \vec{x} [P\vec{x} \leftrightarrow \varphi_{n,i}(\vec{x}, \vec{v}^n)]] \right]$ for some $\varphi_{n,i}(\vec{x}, \vec{v}^n)$ in $L_{\omega_1 \omega}$.
- 2. **Proofs.** The proofs use abstract consistency properties (see [Ke], [Ma 2], [Ma 3]) and in case of Theorems 2 and 3, approximation of automorphisms by finite pieces similarly as in the proofs in [Ma 3]. We will show the proof of Theorem 2 in some detail.

Proof of Theorem 2. Let C be a countably infinite set of new individual constants. Define Γ_2 to be the collection of objects $\gamma = \langle s, f_i \rangle_{i \in I}$ such that s is a finite set of sentences of $L_{\omega_1\omega}(P)(C)$ in negation normal form (n.n.f.) with only finitely many constants from C, I is a finite set, each f_i is a finite subset of $C \times C$, and such that (the main condition) there is no formula μ with (i)₂(γ , μ) where:

(i)₂ (γ, μ) μ is of the form of the formula after " \models " in Theorem 2(ii) and whenever $(\mathfrak{A}, P, \bar{c})_{c \in C}$ is a model of s and, for $i \in I$, g_i is an automorphism of \mathfrak{A} such that $\langle c, d \rangle \in f_i \Rightarrow \langle \bar{c}, \bar{d} \rangle \in g_i$, then $\mathfrak{A} \models \mu$.

Suppose σ is in n.n.f. and it does not satisfy (ii) in Theorem 2. Then clearly $\gamma_0 = {}_{df} \langle \{\sigma\}, \varnothing \rangle$ belongs to Γ_2 . We successively extend this element

of Γ_2 , always remaining in Γ_2 , such that the limit of the procedure yields, in a natural way, a model (\mathfrak{A}, P) with $|M(\mathfrak{A}, P)| = 2^{\aleph_0}$.

LEMMA (ii). For fixed I and f_i ($i \in I$), $\{s: \langle s, f_i \rangle_{i \in I} \in \Gamma_2\}$ is an abstract consistency property.

(iii) For any $\gamma = \langle s, f_i \rangle_{i \in I} \in \Gamma_2$, $j \in I$, $c \in C$, let $d \neq c$ and let d not occur in γ . Then

$$\langle s, f_i, f_i \cup \{\langle c, d \rangle\} \rangle_{i \in I - \{j\}}$$
 and $\langle s, f_i, f_i \cup \{\langle d, c \rangle\} \rangle_{i \in I - \{j\}}$

belong to Γ_2 .

Comment. (iii) will be used to make sure that the domains and ranges of purported automorphisms will indeed be the whole domain (in this case, essentially C) of the structure.

(iv) Let γ and i be as in (iii). Let c, d_1 , d_2 be distinct constants in C but not in γ . Put $f_j' = f_j \cup \{\langle d_1, c \rangle\}$, $f_j'' = f_j \cup \{\langle d_2, c \rangle\}$ and $s' = s \cup \{Pd_1, \neg Pd_2\}$. Then $\gamma' = \langle s', f_i, f_j', f_j'' \rangle_{i \in I - \{j\}} \in \Gamma_2$.

Comment. (iv) is used to "split" a finite approximation f_j into two. Eventually the infinite paths of the tree of such approximations will be the automorphisms and they will give us 2^{\aleph_0} images of P. Note that for "extensions" g'_i, g''_i of f'_i, f''_i , resp., " $g'_iP \neq g''_iP$ ".

PROOF OF (iv). Introduce new operation symbols \mathbf{g}_i ($i \in I$). The assumption that $\gamma' \notin \Gamma_2$ leads to the existence of μ' with (i)₂(γ' , μ'). Let ξ be the formula $\neg \mu' \wedge \bigwedge s \wedge \bigwedge_{i \in I}$ " \mathbf{g}_i is an L-automorphism extending f_i ". By (i)₂(γ' , μ'),

(v) $(\mathfrak{A}, P, \bar{c}, g_i)_{c \text{ in } \gamma, i \in I} \models \xi$ implies that every automorphism of $(\mathfrak{A}, \bar{c})_{c \in \text{dom } f_j}$ leaves P fixed.

Hence by (an inessential strengthening of) (D),

(vi) $\xi \models \forall \vec{x} [P\vec{x} \leftrightarrow \theta(\vec{x}, \vec{c})]$ for $\vec{c} = \text{dom } f_j$ and for some Motohashi formula $\theta(\vec{x}, \vec{x}', \vec{y}')$. Hence $\xi \models \mu''$ where $\mu'' = \exists \vec{x}' \vec{y}' \ \forall \vec{x} [P\vec{x} \leftrightarrow \theta(\vec{x}, \vec{x}', \vec{y}')]$. It follows that

 $(i)_2(\gamma, \mu' \vee \mu'')$ holds, contrary to $\gamma \in \Gamma_2$.

Now, let I_n be the set of finite 0-1 sequences of length n. Let $C = \{c_n : n < \omega\}$. We construct a sequence γ_n $(n < \omega)$ of elements of Γ_2 starting with $\gamma_0 = \langle \{\sigma\}, \emptyset \rangle$ such that $\gamma_n = \langle s_n, f_i^n \rangle_{i \in I_n}$, $s_n \subset s_{n+1}$, $f_i^n \subset f_j^{n+1}$ for $j = i \subset \langle 0 \rangle$, $i \subset \langle 1 \rangle$ and

(vii) $s_{\omega} = \bigcup_{n < \omega} s_n$ is pseudocomplete (see 1.3 Definition in [Ma 2]) or, what is the same, the s_n satisfy (1)–(5) on p. 13 in [Ke] (here we use (ii)),

(viii) $c_n \in \text{dom } f_i^{n+1} \cap \text{rn} f_i^{n+1}$ ($i \in I_n$) (here we use (iii)), and

(ix) for each n and $i \in I_n$, there are $d_0 \in \text{dom } f_{j_0}^{n+1}$, $d_1 \in \text{dom } f_{j_1}^{n+1}$ and $c \in \text{rn} f_{j_0}^{n+1} \cap \text{rn} f_{j_1}^{n+1}$ (here $j_0 = i \cap \langle 0 \rangle$, $j_1 = i \cap \langle 1 \rangle$) such that $\{Pd_0, \neg Pd_1\} \subset s_{n+1}$ (here we use (iv)).

For the canonical model $(\mathfrak{A}, P, \bar{c})_{c \in C}$ of s_{ω} (see the proof of the model existence theorem in [Ke], or 1.4 in [Ma 3]) we have

- (x) $\mathfrak{A} \models \sigma$,
- (xi) the maps $f_{\alpha} = \{\langle \bar{c}, \bar{d} \rangle : \langle c, d \rangle \in \bigcup_{n < \omega} f_{\alpha \mid n}^n \}$ for $\alpha \in {}^{\omega}2$ are automorphisms of A (mainly by (viii)) and
 - (xii) $f_{\alpha}P \neq f_{\alpha'}P$ for $\alpha \neq \alpha'$ by (ix). Q.E.D.

On the proof of Theorem 1. The collection playing the role of Γ_2 above, Γ_1 , is defined as follows. Let P_i denote distinct predicate symbols of the same arity as P, and let us write $s(P_i)$ for a set of sentences in $L_{m,m}(\mathbf{P}_i)(C)$. Let Δ_I be the set of sentences of the form

$$\bigvee_{i \in I} \bigvee_{n < \omega} \exists \vec{u}^n \, \forall \vec{x} \big[P_i \vec{x} \longleftrightarrow \varphi^i_n (\vec{x}, \vec{u}^n) \big]$$

where the φ_n^i are in $L_{\omega_1\omega}$. We define Γ_1 to be the collection of objects $\gamma = \langle s_i(\mathbf{P}_i) \rangle_{i \in I}$ with similar finiteness conditions as for Γ_2 and such that there is no μ with (i)₁(γ , μ) where:

(i)₁ $(\gamma, \mu) \mu \in \Delta_I$ and $\bigcup_{i \in I} s_i(\mathbf{P}_i) \models \mu$. The crucial fact analogous to (iv) above is that for γ as above, and a fixed $j \in I$, if we put $s_j'(\mathbf{P}_j') =_{df} s_j(\mathbf{P}_j') \cup \{\mathbf{P}_j'c\}, s_j''(\mathbf{P}_j'') =_{df} s_j(\mathbf{P}_j'') \cup \{\neg \mathbf{P}_j''c\}$ with $c \in C$ a constant not in γ , then $\langle s_i(\mathbf{P}_i), s_i'(\mathbf{P}_i'), s_j''(\mathbf{P}_j') \rangle_{i \in I - \{j\}}$ again belongs to Γ_1 . The proof of this applies the Beth-Lopez-Escobar theorem.

On the proof of Theorem 3. It is very similar to that of Theorem 2 and applies a corollary to (D): if every model of σ has no nontrivial automorphisms, then $\sigma \models \forall v \ \forall x [x = v \leftrightarrow \theta(x, v)]$ for some M-formula θ without P.

On the proof of Theorem 4. Let us call a formula of the form after " \models " in Theorem 4 (ii) a K-formula. Consider $\sigma = \sigma(P)$ not satisfying (ii). Define $\Gamma_4 = S_4$ to be the set of sets $s(P_0, \ldots, P_{n-1})$ of sentences of $L_{\omega_1\omega}(P_0,\ldots,P_{n-1})$ (C) with the usual finiteness conditions such that for any K-formula $\kappa(P)$, $s \not\models \sigma(P) \rightarrow \kappa(P)$. The crucial property of S_4 is that if $s \in S_4$ is as above then $s \cup \{\sigma(P_n), "P_n \neq P_1", "P_n \neq P_2", \ldots, \}$ " $P_n \neq P_{n-1}$ "} belongs to S_4 . Also, S_4 is an abstract consistency property.

ADDED IN PROOF (May 2, 1973). Jon Barwise noticed that Theorem 1 remains true if we replace σ by a Σ_1^1 -over- $L_{\omega_1\omega}(P)$ sentence $\exists \vec{S}\sigma(P,\vec{S})$. A similar remark holds for the rest of the theorems too. In fact, no essential change is required in the proofs. Barwise also noticed that from the Σ_1^1 generalization of Theorem 1 in the "admissible version," the following strengthening of a theorem due to J. Harrison results immediately: If a Σ_1^1 set of reals does not contain a perfect subset, it is a subset of a set constructible below ω_1^K (Kleene's ω_1) (notice that our proof gives in fact a perfect subset of $M_{\sigma}(\mathfrak{A})$). Subsequently, the author noticed that the Σ_{1}^{1} generalization of Theorem 1 (formulated with "perfect subset") combined with an approximation theorem of Vaught (any constructible Π_1^1 -over- $L_{\omega_1\omega}$ sentence is equivalent for countable structures to $\bigvee_{\alpha<\omega_1}\delta_\alpha$ with some constructible sequence $\langle\delta_\alpha:\alpha<\omega_1\rangle$ of $L_{\omega_1\omega}$ -sentences) directly (and without the use of forcing) gives Mansfield's theorem: any Σ_2^1 set of reals not containing a perfect subset is constructible.

REFERENCES

- [C] C. C. Chang, Some new results in definability, Bull. Amer. Math. Soc. 70 (1964), 808-813. MR 30 #1053.
- [F] S. Feferman, Lectures on proof theory, Proc. of the Summer School in Logic (Leeds, 1967), Springer, Berlin, 1968, pp. 1-107. MR 38 #4294.
 - [Ke] H. J. Keisler, Model theory for infinitary logic, North-Holland, Amsterdam, 1971.
- [Ku 1] D. W. Kueker, *Definability*, automorphisms and infinitary languages, Lecture Notes in Math., 72, Springer-Verlag, Berlin and New York, 1968, pp. 152–165.
- [Ku 2] ——, Generalized interpolation and definability, Ann. Math. Logic 1 (1970), no. 4, 423-468. MR 44 #54.
- [Ma 1] M. Makkai, On a generalization of a theorem of E. W. Beth, Acta Math. Acad. Sci. Hungar. 15 (1964), 227–235. MR 28 #5001.
- [Ma 2] ———, An application of a method of Smullyan to logics on admissible sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 341–346. MR 42 # 1649.
- [Ma 3] ———, On the model theory of denumerably long formulas with finite strings of quantifiers, J. Symbolic Logic 34 (1969), 437–459. MR 41 #45.
- [Mo] N. Motohashi, A new theorem on definability . . . , preprint; also in: Dissertation, University of Tokyo, 1971.
- [R] G. E. Reyes, Local definability theory, Ann. Math. Logic 1 (1970), 95-137. MR 43 # 31.
- [Sc] D. Scott, Logic with denumerably long formulas and finite strings of quantifiers, Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), North-Holland, Amsterdam, 1965, pp. 329-341. MR 34 #32.
- [Sv] L. Svenonius, A theorem on permutations in models, Theoria (Lund) 25 (1959), 173-178. MR 25 #1986b.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, CANADA

Current address: Centre de Recherches Mathematiques, Université de Montréal, Montréal, Canada