EIGENFUNCTION EXPANSIONS FOR NONDENSELY DEFINED OPERATORS GENERATED BY SYMMETRIC ORDINARY DIFFERENTIAL EXPRESSIONS ${ }^{1}$

BY EARL A. CODDINGTON
Communicated by Fred Brauer, December 18, 1972

1. Nondensely defined symmetric ordinary differential operators. This note is a sequel to [2]; the notations are the same. Let L be the formally symmetric ordinary differential operator

$$
L=\sum_{k=0}^{n} p_{k} D^{k}=\sum_{k=0}^{n}(-1)^{k} D^{k} \bar{p}_{k}, \quad D=\frac{d}{d x},
$$

where the p_{k} are complex-valued functions of class C^{k} on an interval $a<x<b$, and $p_{n}(x) \neq 0$ there. In the Hilbert space $\mathfrak{H}=\mathfrak{L}^{2}(a, b)$ let S_{0} be the closure in \mathfrak{S}^{2} of the set of all $\{f, L f\}$ for $f \in C_{0}^{\infty}(a, b)$, the functions in $C^{\infty}(a, b)$ vanishing outside compact subintervals of $a<x<b$. This S_{0} in a closed densely defined symmetric operator whose adjoint has the domain $\mathfrak{D}\left(S_{0}^{*}\right)$, the set of all $f \in C^{n-1}(a, b)$ such that $f^{(n-1)}$ is absolutely continuous on each compact subinterval and $L f \in \mathfrak{H}$. For $f \in \mathfrak{D}\left(S_{0}^{*}\right)$, $S_{0}^{*} f=L f$. If $M_{0}=S_{0}^{*} \Theta S_{0}$, then

$$
\operatorname{dim}\left(M_{0}\right)^{ \pm}=\operatorname{dim} \mathfrak{D}\left(\left(M_{0}\right)^{ \pm}\right)=\operatorname{dim} v\left(S_{0}^{*} \mp i I\right)=\omega^{ \pm}
$$

say $\left(v(T)=\right.$ null space of T). Thus $0 \leqq \omega^{ \pm} \leqq n$, and $\operatorname{dim} M_{0}=\omega^{+}+$ $\omega^{-} \leqq 2 n$. Let \mathfrak{H}_{0} be a subspace of \mathfrak{H}, $\operatorname{dim} \mathfrak{H}_{0}=p<\infty$, and define the operator S, with $\mathfrak{D}(S)=\mathfrak{D}\left(S_{0}\right) \cap\left(\mathfrak{G} \ominus \mathfrak{H}_{0}\right)$, via $S \subset S_{0}$. We see that (2.1) of [2] is satisfied and Theorem 1 of [2] is applicable to S. If $\omega^{+}=$ $\omega^{-}=\omega$, which we now assume, then Theorem 2 of [2] is also applicable. For $u, v \in \mathfrak{D}\left(S_{0}^{*}\right)$ we have Green's formula

$$
\int_{y}^{x}(\bar{v} L u-u \overline{L v})=[u v](x)-[u v](y)
$$

where $[u v]$ is a semibilinear form in $u, u^{\prime}, \ldots, u^{(n-1)}$ and $v, v^{\prime}, \ldots, v^{(n-1)}$. From this it follows that $[u v](x)$ tends to limits $[u v](a),[u v](b)$ as x tends to a, b. Then we may write

$$
\langle u v\rangle=(L u, v)-(u, L v)=[u v](b)-[u v](a) .
$$

[^0]Thus, in Theorem 2 of [2], (ii) represents a set of boundary-integral conditions, and (iii) (or the expression for H_{s}) shows that both boundary and integral terms appear in the expression for the operator part of H.
2. Eigenfunction expansions. For any selfadjoint subspace extension $H=H_{s} \oplus H_{\infty}$ of S in \mathfrak{S}^{2}, as given in Theorem 2 of [2], we have $H_{s}=$ $\int_{-\infty}^{\infty} \lambda d E_{s}(\lambda)$, where $\left\{E_{s}(\lambda)\right\}$ is the spectral family of projections in $\mathfrak{G} \ominus H(0)$ for H_{s}. We can explicitly describe the $E_{s}(\lambda)$ in terms of a basis for the solutions of $(L-\ell) u=\varphi \in \mathfrak{G}_{0}, \ell \in \boldsymbol{C}$. Let $\varphi_{1}, \ldots, \varphi_{p}$ be an orthornormal basis for \mathfrak{H}_{0}, and let c be fixed, $a<c<b$. Let $s_{j}(x, \ell)$, $a<x<b, \ell \in \boldsymbol{C}, j=1, \ldots, n+p$, satisfy

$$
(L-\ell) s_{j}=0, \quad s_{j}^{(k-1)}(c, \ell)=\delta_{j k}, \quad j, k=1, \ldots, n
$$

$$
\begin{equation*}
(L-\ell) s_{n+j}=\varphi_{j}, \quad s_{n+j}^{(k-1)}(c, \ell)=0, \quad j=1, \ldots, p, \quad k=1, \ldots, n \tag{2.1}
\end{equation*}
$$

Theorem 1. For any selfadjoint subspace extension $H=H_{s} \oplus H_{\infty}$ of S in \mathfrak{G}^{2}, and s_{j} satisfying (2.1), there exists an $(n+p) \times(n+p)$ matrix-valued function ρ on the real line \boldsymbol{R} which is Hermitian, nondecreasing, and of bounded variation on each finite interval. Let $\Delta=\{v \mid \mu<\nu \leqq \lambda\}$ and $E_{s}(\Delta)=E_{s}(\lambda)-E_{s}(\mu)$, where λ, μ are continuity points of E_{s}. For $f \in C_{0}(a, b) \cap(\mathfrak{G} \ominus H(0))$ we have

$$
E_{s}(\Delta) f(x)=\int_{\Delta} \sum_{j, k=1}^{n+p} s_{k}(x, v) \hat{f}_{j}(v) d \rho_{k j}(v)
$$

where $\hat{f}_{j}(v)=\left(f, s_{j}(v)\right)$.
For vector-valued functions $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n+p}\right), \eta=\left(\eta_{1}, \ldots, \eta_{n+p}\right)$ on \boldsymbol{R} we can introduce

$$
(\zeta, \eta)=\int_{-\infty}^{\infty} \sum_{j, k=1}^{n+p} \zeta_{j}(v) \overline{\eta_{k}(v)} d \rho_{k j}(v)
$$

Since ρ is nondecreasing, $(\zeta, \zeta) \geqq 0$ and we can define the norm $\|\zeta\|=$ $(\zeta, \zeta)^{1 / 2}$, and consider the Hilbert space $\mathfrak{L}^{2}(\rho)=\{\zeta \mid\|\zeta\|<\infty\}$.

Theorem 2 (eigenfunction expansion). Let H be as in Theorem 1 and let $f \in \mathfrak{G} \ominus H(0)$. Then $\hat{f}=\left(\hat{f}_{1}, \ldots, \hat{f}_{n+p}\right)$ converges in norm in $\mathfrak{L}^{2}(\rho)$, $\|f\|=\|\hat{f}\|$, and

$$
f(x)=\int_{-\infty}^{\infty} \sum_{j, k=1}^{n+p} s_{k}(x, v) \hat{f}_{j}(v) d \rho_{k j}(v)
$$

where the integral converges in norm in $\mathfrak{Q}^{2}(a, b)$.
3. Systems of differential operators. The results in Theorems 1 and 2 carry over to S generated by a system of ordinary differential operators. We indicate the situation for a first order system. Let $L=P_{1} D+P_{0}$, where P_{1}, P_{0} are $m \times m$ matrix-valued functions on $a<x<b$, with $P_{1} \in C^{1}(a, b), P_{0} \in C(a, b)$, and $P_{1}^{-1}(x)$ existing for $a<x<b$. Thus L operates on vector-valued functions considered as $m \times 1$ matrices. We assume L is formally symmetric, i.e., $P_{1}^{*}=-P_{1}, P_{0}-P_{0}^{*}=P_{1}^{\prime}$. The relevant Hilbert space is $\mathfrak{Y}=\mathfrak{I}_{m}^{2}(a, b)$, the set of all $m \times 1$ matrixvalued functions u on $a<x<b$ such that $(u, u)<\infty$. In general, for any two matrix-valued functions F, G such that $G^{*} F$ is defined and can be integrated, we define $(F, G)=\int_{a}^{b} G^{*} F$. The domain of the operator S_{0}^{*} consists of all $f \in \mathfrak{G}$ which are absolutely continuous on each compact subinterval, and $L f \in \mathfrak{G}$; for $f \in \mathfrak{D}\left(S_{0}^{*}\right), S_{0}^{*} f=L f$. Green's formula in this case gives

$$
\int_{y}^{x} v^{*} L u-(L v)^{*} u=[u v](x)-[u v](y)
$$

where $[u v](x)=v^{*}(x) P_{1}(x) u(x)$. The operator $S_{0} \subset S_{0}^{*}$ has a domain consisting of all $f \in \mathfrak{D}\left(S_{0}^{*}\right)$ such that $\langle f g\rangle=0$ for all $g \in \mathfrak{D}\left(S_{0}^{*}\right)$, where $\langle f g\rangle=(L u, v)-(u, L v)$. For $M_{0}=S_{0}^{*} \ominus S_{0}$ we have $0 \leqq \operatorname{dim} M_{0} \leqq 2 m$. If $\mathfrak{H}_{0} \subset \mathfrak{H}$, $\operatorname{dim} \mathfrak{H}_{0}=p<\infty$, we can define S as in (2.2) of [2], and then (2.1) of [2] is valid. Theorems 1 and 2 of [2] can then be applied.

We describe concretely the regular case where a, b are finite, P_{1}^{\prime}, P_{0} are continuous on the closed interval $a \leqq x \leqq b$, and $P_{1}^{-1}(x)$ exists there. Then $\mathfrak{D}\left(S_{0}^{*}\right)$ is the set of all $f \in \mathfrak{H}$ which are absolutely continuous on $a \leqq x \leqq b$ and $L f \in \mathfrak{H}$, and $\mathfrak{D}\left(S_{0}\right)$ is the set of those $f \in \mathfrak{D}\left(S_{0}^{*}\right)$ satisfying $f(a)=f(b)=0$. In this case $\operatorname{dim}\left(M_{0}\right)^{ \pm}=m$, and Theorem 2 of [2] takes the following form.

Theorem 3. In the regular case of a first order system L as given above, let H be a selfadjoint subspace extension of S in \mathfrak{G}^{2}, with $\operatorname{dim} H(0)=s$. Let $\varphi_{1}, \ldots, \varphi_{p}$ be an orthornormal basis for \mathfrak{H}_{0}, with $\varphi_{1}, \ldots, \varphi_{s}$ a basis for $H(0)$. Then $H=\{\{h, L h+\varphi\}\}$ such that $h \in \mathfrak{D}\left(S_{0}^{*}\right), \varphi \in \mathfrak{H}_{0}$, and satisfying
(i) $\left(h, \Phi_{0}\right)=0$,
(ii) $M h(a)+N h(b)+(h, Z)=0$,
(iii) $\varphi=\Phi_{0} c+\Phi_{1}[(h, \Psi)+C h(a)+D h(b)]$,
where Φ_{0}, Φ_{1} are matrices with columns $\varphi_{1}, \ldots, \varphi_{s}$ and $\varphi_{s+1}, \ldots, \varphi_{p}$ respectively; c, M, N, C, D are matrices of complex constants of order $s \times 1, m \times m, m \times m,(p-s) \times m,(p-s) \times m$ respectively, and
(a) $\operatorname{rank}(M: N)=m$,
(b) $M P_{1}^{-1}(a) M^{*}-N P_{1}^{-1}(b) N^{*}=0$,
(c) $\Psi=\Phi_{1}\left\{E+\frac{1}{2}\left[D P_{1}^{-1}(b) D^{*}-C P_{1}^{-1}(a) C^{*}\right]\right\}, E=E^{*}$,
(d) $Z=\Phi_{1}\left[D P_{1}^{-1}(b) N^{*}-C P_{1}^{-1}(a) M^{*}\right]$.

Conversely, if there exist M, N, C, D, E satisfying (a), (b) and Ψ, Z are defined by (c), (d), then H defined by (i)-(iii) is a selfadjoint extension of S with $\operatorname{dim} H(0)=s$. The operator part H_{s} of H is

$$
H_{s} h=L h-\Phi_{0}\left(L h, \Phi_{0}\right)+\Phi_{1}[(h, \Psi)+C h(a)+D h(b)] .
$$

Here $(M: N)$ is an $m \times 2 m$ matrix obtained by setting the columns of M next to those of N in the order indicated, and E is a $(p-s) \times(p-s)$ matrix of constants. The operator extensions H are those given by the case $s=0$, and these properly include those studied by A. M. Krall [3, Theorem 5.1]. He considered the operator cases when $P_{1}(x)=-i I$, and $\Psi=0, E=0$, i.e., only those operators H which do not contain an integral term in the operator. (In his condition (5.5), p. 444 of [3], which is the analog of (d) above, $-i$ should be replaced by $+i$.)

The analogs of the expansion results, Theorems 1 and 2, are valid for the general singular case. Let $s_{j}(x, \ell), a<x<b, \ell \in \boldsymbol{C}$, satisfy $(L-\ell) s_{j}=0, s_{j}(c, \ell)=e_{j}$ for $j=1, \ldots, m$, and $(L-\ell) s_{m+j}=\varphi_{j}$, $s_{m+j}(c, \ell)=0$ for $j=1, \ldots, p$, where $a<c<b$ and e_{j} is the unit vector with 1 in the j th row. Let $S(x, \ell)$ be the matrix with columns $s_{1}(x, \ell), \ldots$, $s_{m+p}(x, \ell)$.

Theorem 4. Let L be a first order system, and $H=H_{s} \oplus H_{\infty}$ a selfadjoint extension of S in $\mathfrak{H}^{2}, \mathfrak{H}=\mathfrak{E}_{m}^{2}(a, b)$, with $H_{s}=\int_{-\infty}^{\infty} \lambda d E_{s}(\lambda)$ in $\mathfrak{G} \ominus H(0)$. There exists an $(m+p) \times(m+p)$ matrix-valued function ρ on \boldsymbol{R}, which is Hermitian, nondecreasing, and of bounded variation on each finite interval. If $\Delta=(\mu, \lambda]$, and μ, λ are continuity points of E_{s}, then for $f \in C_{0}(a, b) \cap(\mathfrak{G} \ominus H(0))$,

$$
E_{s}(\Delta) f(x)=\int_{\Delta} S(x, v) d \rho(v) \hat{f}(v), \quad \hat{f}(v)=(f, S(v))
$$

If $f \in \mathfrak{G} \ominus H(0)$, then $\hat{f} \in \mathfrak{L}^{2}(\rho),\|f\|=\|\hat{f}\|$, and

$$
f(x)=\int_{-\infty}^{\infty} S(x, v) d \rho(v) \hat{f}(v)
$$

4. Selfadjoint extensions in larger spaces. In either the nth order case or first order system case, if $\operatorname{dim}\left(M_{0}\right)^{+} \neq \operatorname{dim}\left(M_{0}\right)^{-}$there are no selfadjoint extensions of S in \mathfrak{G}^{2}. However, there always exist such extensions in a larger space $(\mathfrak{H} \oplus \mathfrak{R})^{2}$, where $\mathfrak{\Omega}$ is a Hilbert space. Let $H=H_{s} \oplus H_{\infty}$ be any such with $H_{s}=\int_{-\infty}^{\infty} \lambda d E_{s}(\lambda)$ on $(\mathfrak{H} \oplus \mathfrak{\Omega}) \ominus H(0)$. Let P be the orthogonal projection of $\mathfrak{H} \oplus \mathfrak{\Omega}$ onto \mathfrak{H}, and define $F_{s}(\lambda) f=P E_{s}(\lambda) f$, for $f \in \mathfrak{G} \ominus P H(0), \lambda \in \boldsymbol{R}$. The proofs of Theorems 1, 2, 4 involve a
nontrivial adaptation of the method used in our earlier paper on operators [1], and we can avoid the use of the results of A. V. Straus mentioned there. Thus we can show that these theorems are valid for any H in $(\mathfrak{G} \oplus \mathfrak{\Omega})^{2}$, with E_{s} replaced by F_{s}, and $\mathfrak{H} \ominus H(0)$ replaced by $\mathfrak{H} \ominus P H(0)$. Hence it is not necessary to assume $\operatorname{dim}\left(M_{0}\right)^{+}=\operatorname{dim}\left(M_{0}\right)^{-}$.

Detailed proofs will appear elsewhere.

References

1. E. A. Coddington, Generalized resolutions of the identity for symmetric ordinary differential operators, Ann. of Math. (2) 68 (1958), 378-392. MR 21 \# 2094.
2. -, Selfadjoint subspace extensions of nondensely defined symmetric. operators, Bull. Amer. Math. Soc. 79 (1973).
3. A. M. Krall, Differential-boundary operators, Trans. Amer. Math. Soc. 154 (1971), 429-458. MR 42 \# 6328.

Université de Paris VI, Paris, France
Department of Mathematics, University of California, Los Angeles, California 90024

[^0]: AMS (MOS) subject classifications (1970). Primary 47E05, 34B25.
 Key words and phrases. Symmetric ordinary differential operator, eigenfunction expansion, symmetric system of ordinary differential operators.
 ${ }^{1}$ This research was supported in part by NSF Grant No. GP-33696X.

