FOLIATIONS AND GROUPS OF DIFFEOMORPHISMS

BY WILLIAM THURSTON

Communicated by William Browder, July 7, 1973

John Mather has described a close relation between framed codimension-one Haefliger structures (these form a class of singular foliations), and the group of compactly supported diffeomorphisms of \mathbb{R}^1 , with discrete topology [11], [12], [14]. In this announcement I will describe generalizations of his ideas to higher codimension Haefliger structures and groups of diffeomorphisms of arbitrary manifolds. See Haefliger [7] for a development of Haefliger structures and their classifying spaces.

I would like to thank Boyd Anderson, André Haefliger and John Mather for long discussions and proddings about this material, and many others for helpful conversations and relevant information.

Let $\text{Diff}^r(M^p)$ denote the group of C^r diffeomorphisms of M^p , a closed manifold. Let $\text{Diff}^r_0(M^p)$ denote the connected component of the identity.

THEOREM 1. Diff_0^{∞} (M^p) is a simple group.

The proof makes use of both the theorem of Epstein [4] that the commutator subgroup of $\text{Diff}_0(M^p)$ is simple, and of the result of M. Herman [9] which gives the case M^p is a *p*-torus.

THEOREM 2. $B\overline{\Gamma}_{p}^{\infty}$ is (p+1)-connected, where $B\overline{\Gamma}_{p}^{\infty}$ is the classifying space for framed, codimension p, C^{∞} , Haefliger structures.

The more usual notation is $F\Gamma_p^{\infty} = B\overline{\Gamma}_p^{\infty}$. Haefliger proved [6] that $B\overline{\Gamma}_p^r$ is *p*-connected for $1 \leq r \leq \infty$; Mather proved that $B\overline{\Gamma}_1^{\infty}$ is 2-connected.

Theorem 2 means that two C^{∞} foliations of a manifold coming from nonsingular vector fields are homotopic as Haefliger structures if and only if the normal bundles are isomorphic.

Theorems 1 and 2 are proven by showing they are related; cf. Theorem 4 for a statement of a relationship.

COROLLARY. $P_1^{[p/2]}$ is nontrivial in $H^*(B\Gamma_p^{\infty}; \mathbf{R})$ where P_1 is the first real Pontrjagin class of the normal bundle to the canonical Haefliger structure.

AMS (MOS) subject classifications (1970). Primary 57D30, 57D50.

Copyright © American Mathematical Society 1974

Thus, Bott's vanishing theorem [1], which says real Pontrjagin classes in $B\Gamma_p^r$ ($r \ge 2$) vanish above dimension 2p, gives a sharp bound on dimensions.

This corollary in the case p=2 follows easily from Theorem 2.

For higher codimensions, product foliations then yield examples.

THEOREM 3. $B\overline{\Gamma}_p^0$ is contractible.

Again, Mather proved this when the codimension is one.

This means topological Haefliger structures are completely determined up to homotopy by their normal micro-bundles.

Theorem 3 implies that Bott's vanishing theorem is quite false in the topological case—any normal micro-bundle is the normal micro-bundle for a topological foliation. In fact, if the micro-bundle is differentiable, it even admits a Haefliger structure Lipschitz close to being differentiable.

A little background and notation is necessary before the statement of the more general relationships. Let G be a topological group. Let G_{δ} be G with discrete topology. Then the map $G_{\delta} \rightarrow G$ is a continuous map which has a homotopy-theoretic fiber \overline{G} . \overline{G} is also a topological group: the explicit construction for \overline{G} is the space of paths α in G ending at the identity $e=\alpha(1)$, with discrete topology on $\alpha(0)$. Then multiplication is pointwise. There are maps, now,

$$\bar{G} \to G_{\delta} \to G \to B\bar{G} \to BG_{\delta} \to BG,$$

and any two consecutive arrows define a fibration.

BG is the classifying space for G-bundles. BG_{δ} classifies flat G-bundles: for instance, B Diff^{∞} $(M^n)_{\delta}$ has an associated M-bundle, with discrete structure group: i.e., a C^{∞} foliation transverse to the fibers of the bundle. Thus, B Diff^{∞} $(M^p)_{\delta}$ classifies "foliated M^p -bundles". Finally, BG classifies G-bundles with a flat structure, together with a global trivialization defined (up to homotopy); e.g. B Diff^{∞} (M^p) classifies "foliated M^p products".

Let $\operatorname{Diff}_K(\mathbb{R}^p)$ be the group of diffeomorphisms of \mathbb{R}^p with compact support. Then again, $B \operatorname{\overline{Diff}}_K^r(\mathbb{R}^p) \times \mathbb{R}^p$ has a foliation of codimension ptransverse to the \mathbb{R}^p -factors. Thus, there is a classifying map

$$B \,\overline{\mathrm{D}\mathrm{i}}\mathrm{ff}_K^r(\mathbf{R}^p) \times \mathbf{R}^p \to B\Gamma_p^r.$$

(The image is in $B\overline{\Gamma}_{p}^{r}$ since there is a natural trivialization of the normal bundle to the foliation.)

The foliation agrees with the trivial, product foliation in a neighborhood of ∞ in the \mathbb{R}^p factors. Thus, one obtains a map of the *p*-fold suspension of $B \overline{D} iff_K^r \mathbb{R}^p$,

$$S^p(B \ \overline{\mathrm{Diff}}_K^r \mathbf{R}^p) \to B \overline{\Gamma}_p^r.$$

This defines an adjoint map $B \overline{D}iff_K^r(\mathbb{R}^p) \rightarrow \Omega^p(B\overline{\Gamma}_p^r)$ to the *p*-fold loop space of $B\overline{\Gamma}_p^r$.

THEOREM 4. The map $B \overline{D}iff_K^r(\mathbb{R}^p) \rightarrow \Omega^p(B\overline{\Gamma}_p^r)$ induces an isomorphism on homology.

This theorem is due to Mather in the case p=1.

The map is certainly not a homotopy equivalence since $\pi_1(B \overline{\mathrm{Diff}}_K^r \mathbf{R}^p)$ is highly nonabelian while $\pi_1(\Omega^p B \overline{\Gamma}_p^r) = \pi_{p+1}(B \overline{\Gamma}_p^r)$ is abelian.

Similarly, there is a map $B \overline{D} \operatorname{iff}^r(M^p) \times M^p \to B\Gamma_p^r$ which is a lifting of the classifying map for the tangent bundle of M^p , so there is a commutative diagram

Let X be the space of liftings of the classifying map for $T(M^p)$ in BO_p to $B\Gamma_p^r$. Then we have a map $B \overline{D} \text{iff}^r(M^p) \rightarrow X$.

THEOREM 5. The map

 $B \overline{\mathrm{D}}\mathrm{iff}^r(M^p) \to X$

induces an isomorphism on homology.

Again, this is not a homotopy equivalence since $\pi_1(X)$ is abelian. For the case r=0, we assume M^p is a differentiable manifold.

COROLLARY. (a) B Homeo (M^p) is acyclic, where Homeo (M^p) = Diff⁰ (M^p) is the group of homeomorphisms of M^p .

(b) The map B Homeo $(M^p)_{\delta} \rightarrow B$ Homeo (M^p) induces an isomorphism on homology.

This corollary is implied by Theorems 3 and 5. Cf. Mather [13], who showed B Homeo_K(\mathbb{R}^{p})_{δ} is acyclic.

COROLLARY. The following groups are isomorphic, where k is the first positive integer such that one of them is nontrivial:

(i) $H_k(B \overline{\mathrm{Diff}}^r(M^p); Z)$,

(ii) $H_k(B \overline{\mathrm{D}}\mathrm{iff}_K^r(\mathbf{R}^p); Z)$,

(iii) $H_{k+p}(B\overline{\Gamma}_p^r; Z)$.

CONJECTURE. This first k is p+1, for $r = \infty$.

Mather's theorem [11] shows this for p=1. Bott and Haefliger showed

[March

306

that all differentiable characteristic classes (in some sense) vanish below this dimension, $H_{2p+1}(B\bar{\Gamma}_p^r; Z)$ [2], [3].

In [16] I sketched examples showing there is a surjective homomorphism

 $H_{\mathbf{3}}(B\overline{\Gamma}_{1}^{\infty}; Z) \twoheadrightarrow \mathbf{R},$

using the Godbillon-Vey invariant gv [5]. Recently I have extended this to arbitrary codimension, so there is a surjective homomorphism

$$H_{2p+1}(B\Gamma_p^{\infty};Z)\twoheadrightarrow R.$$

Bibliography

1. R. Bott, On a topological obstruction to integrability, Proc. Int. Congress Nice, 1970, 27–36.

2. R. Bott and A. Haefliger, On characteristic classes of Γ -foliations, Bull. Amer. Math. Soc. **78** (1972), 1039–1044.

3. ——, Continuous cohomology and characteristic classes, (to appear).

4. D. B. A. Epstein, *The simplicity of certain groups of homeomorphisms*, Compositio Math. 22 (1970), 165–173. MR 42 #2491.

5. C. Godbillon and J. Vey, Un invariant des feuilletage de codimension 1, C.R. Acad. Sci. Paris Sér. A-B 273 (1971), A92-A95. MR 44 #1046.

6. A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), 183-194. MR 41 #7709.

7. ——, *Homotopy and integrability*, Manifolds-Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Math., vol. 197, Springer, Berlin, 1971, pp. 133–163. MR 44 #2251.

8. ——, Sur les classes characteristiques des feuilletages, Séminaire Bourbaki, No. 412, June 1972.

9. M. Herman, Simplicité du groupe des difféomorphismes de classe C^{∞} , isotopes à l'identité, du tore de dimension n, C.R. Acad. Sci. Paris Sér. A-B 273 (1971), A232–A234. MR 44 #4788.

10. M. Herman and F. Sergeraert, Sur un théorème d'Arnold et Kolmogorov, C.R. Acad. Sci. Paris Sér. A-B 273 (1971), A409-A41.1. MR 44 #7586.

11. J. Mather, On Haefliger's classifying space. I, Bull. Amer. Math. Soc. 77 (1971), 1111–1115. MR 44 #1047.

12. — , On Haefliger's classifying space. II: Approximation theorems, (preprint). 13. — , The vanishing of homology of certain groups of homeomorphisms, Topology

13. ——, The vanishing of homology of certain groups of homeomorphisms, Topology 10 (1971), 297–298. MR 44 #5973.

14. ——, Integrability in codimension 1, Comment. Math. Helv. (to appear).

15. W. Thurston, Noncobordant foliations of S³, Bull. Amer. Math. Soc. 78 (1972), 511-514. MR 45 #7741.

16. ——, Variation of the Godbillon-Vey invariant in higher codimension, (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

Current address: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139