ON THE DIOPHANTINE EQUATION $Y^{2}+K=X^{5}$

BY J. BLASS ${ }^{1}$
Communicated by Olga Taussky Todd, July 22, 1973

In this paper we shall discuss the integral solutions of the diophantine equation $Y^{2}+K=X^{5}$, where K is a square-free positive integer. We shall prove the following:

Theorem. If the class number h of the quadratic field $Q(\sqrt{ }-K)$ is not divisible by 5 , and if $K \neq 8 L-1$, then the equation $Y^{2}+K=X^{5}$ has no nonzero integral solutions with the exceptions of $K=19,341$.

In these cases the solutions will be as follows:

$$
\begin{aligned}
(22434)^{2}+19 & =(55)^{5} \\
(2759646)^{2}+341 & =(377)^{5}
\end{aligned}
$$

The ideal equation $[Y+\sqrt{ }-K] \cdot[Y-\sqrt{ }-K]=X^{5}$ leads to finitely many equations [see e.g. [3]] of the form $f(A, B)=m$, where f is a homogeneous polynomial of degree 5 .

The case $Y+\sqrt{ }-K=\omega^{5}$, where ω is an integer in $Q(\sqrt{ }-K)$ is reduced to solving $Y^{2}=20 X^{4}+1$. This was discussed by W. Ljunggren [2] and J. H. E. Cohn [1].

References

1. J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540. MR 29 \#1166.
2. W. Ljunggren, Über die Gleichung $X^{4}-D y^{2}=1$, Arch. Math. Natur. 45 (1942), no. 5, 61-70. MR 7, 47.
3. L. J. Mordell, Diophantine equations, Pure and Appl. Math., vol. 30, Academic Press, New York, 1969. MR 40 \#2600.

Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 10B15.
 ${ }^{1}$ This research was supported in part by the Bowling Green State University, under the Faculty Research Grant.

