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Throughout G is a compact Lie group which is topologically cyclic 
with dense generator g. Let N and M be smooth G manifolds without 
boundary and Fez M a closed invariant submanifold. All manifolds are 
oriented and G preserves orientation. Let f :N-^M be a proper G map. 
When is ƒ properly G homotopic to a map y which is transverse regular to 
Fc iM, written y(\\Y! We introduce obstructions which show that trans-
versality is a global phenomena in contrast to the case G = l where every­
thing is local and trivial. 

Without loss of generality, we may assume that ƒ9 : N9->M9 is transverse 
to Y9 and set X9 = (f9)~1(Y9). For each oriented real G vector bundle v 
over X9 such that the G representation on each fiber of v has no trivial 
factor and g preserves orientation on each fiber, let A±(v) be the ± eigen-
bundles of the canonical involution r on A(t;®C)=2 W(v®C) constructed 
from the orientation and an inner product on v. Let A__1(t;®C)= 
2 (- l)U f( t)0C), IXs e KG(TX9) be the index class of Xg

9 i.e. the symbol 
of the operator D+. See [1, p. 575]. Let 0>^R(G) be the prime ideal of 
characters {X e R(G)\X(g)=Ö} and 

A^x(v 0 C) 

L e t / : Z - > r b e a G map. Iff is an embedding there is a homomorphism 
ƒ ! :K0(TXy+KG(TY) [1]. By taking the product of Y with a real G module 
and using the Thorn isomorphism for complex G vector bundles, we may 
assume tha t / ! is defined for any map ƒ and denote it by ƒ*. The normal 
bundle of 7 in M is denoted by v(Y, M). Its restriction to Y9 has a 
splitting 

(ii) ( / ' )M Y, M) = v( Y, M)9 + v2( 7, M), 

where v(Y, M)9 is the subbundle of points fixed by g and i9: Y9->Y is 
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the inclusion. Lçtj9:X9-+N9 be the inclusion and define v=v(f) by 

(iii) v + (f°)*v2(Y, M) = (jg)*v(N\ N) 

and set 
BG = â$(v(f))eKG(TX%. 

The inclusions of TNg in TN and TYg in TY are denoted by Thg and 
Tig. Let (ldX9)^ :KG(TX%->R(G)^> be the localization of the Atiyah-
Singer index homomorphism. The group of connected components of G 
is denoted by U0(G). Define 

(iv) g(f) = ( I d f V(BG) e R(G)^R(U0(G)), 

(v) 1(f) = X_MNg, N) ® C) • Jl(B0) e KG(TN^I(ThrK0(TN), 

(vi) &(f) = X_MYg, Y) ® C)/*(BG) e K ^ m ^ T i r ^ T y ) . 

THEOREM 1. Iff:N->M is properly G homotopic to y and yfaY, then 
g(f), 1(f) and &(f) are zero. 

PROOF. Suppose f(\\Y and X=f~\Y). Then g(/)=Sign(G, X) e 
R(U0(G)); moreover, &(f) = (Ti9)%(Ix), where Ix e K0(TX) is the 
index class of X. Similarly one sees that ƒ(ƒ)=(). 

The notion of fiber homotopy equivalence is extended to the category 
of G vector bundles as follows : Let N and M be two (real) G bundles over 
a G space Y. AG map œ : N-+M is called a quasi-équivalence if œ is proper, 
fiber preserving and degree 1 on fibers. The notion of normal map is ex­
tended to the category of smooth, closed G manifolds as follows: A normal 
G map ƒ :X-> Y consists of a triple [X, ƒ, F] where ƒ :X-> Y is a G map of 
degree 1 and F is a bundle map F ^ ^ + Z ^ A O - ^ T T + M covering/for 
some pair of G bundles N and M over 7. When G = l the set of normal 
cobordism classes of normal maps to Y and the set of fiber homotopically 
equivalent bundles with appropriate equivalence relation are in 1-1 cor­
respondence. Transversality provides the correspondence. For general G 
and quasi-equivalence co:AT->M, the obstructions g(o>), l(œ) and 0{œ) 
to making co rh Y give obstructions to converting a quasi-equivalence to a 
normal G map. 

EXAMPLE 1. Let G = SX with dense generator t. Let N and M be two 
complex S1 vector bundles over a closed S1 manifold Y. To simplify the 
formula, we assume Nt=Mt= YK The restrictions TV and M of N and M 
to F* have real splittings N=2n>oNn, M=2n>oMn where, e.g., Nn is 
the subbundle on which t acts by multiplication by tn. Similarly, v(Y\ Y) 
has such a splitting. Let 

(vii) A(t, N) = n n ,„ „ ! W e TO'. Q> 
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where the elementary symmetric functions of the x—XjiNn) are the 
Chern classes of Nn, 

(viii) L'(rr) = n rrh^ (TF'} e H*iYt>c)> 
tanh(x,/2) 

where the elementary symmetric functions of the x\ are the Pontrjagin 
classes of YK 

The ring R{SX)^ is contained in the field Q(t) of rational functions of t. 
The obstruction g(co) e Q{t)\Z (Z=R(\)) is given by the rational function 

(ix) g(co)(0 = (A(t, v(Y\ Y)) ^Ml V(TY% [Y<]\ 
\ A(t, M) / 

where (a, [Y1]) denotes evaluation of the cohomology class a on the 
orientation class [ P ] eH*(Y\ C). Observe that the obstruction g{oS) 
does not depend on co. Essentially the reason is that S1 is connected. 
(Compare (ix) with [1, (7.7)].) 

EXAMPLE 1'. As a very special illustration of (ix), take Y to be a point 
and N and M the complex two-dimensional S1 modules N=tv+tQ and 
M=t+tPQ, (p,q)=l, where t e S1 acts with eigenvalues tp and tq, re­
spectively, t and tm. We view N and M as Sl vector bundles over Y. 
Choose positive integers a and b such that —ap+bq=l. Let z=(zQ,z1) 
be complex coordinates of a point zeN and set co0(z)=(z%zl, zl+z'i). 
Then co0 is a proper S1 map and has degree 1 ; moreover, 

(x) gKxo = y + ix^ + ixt-ix^-D e «o. 
v (** - i)(t* - i)(t + i ) ( ^ + i) z 

PRODUCT LEMMA 3. LeJ JV and M be two complex G modules viewed as 
G bundles over a point, and co:N->M a quasi-equivalence. Then co induces a 
quasi-equivalence co : F x N-+ Yx M for any closed G manifold Y and 

g(d>) = Sign(G, Y)-s(co). 

COROLLARY 4. Let Y be a closed Sl manifold with Sign(Y)= 
Sign(l, 7 ) ^ 0 . Let co0:N-+M and co0: YxN->YxM be as above. Then 

EXAMPLE 2. Let co:N-+M be a quasi-equivalence of G bundles over 
Y. Assume N9=M9 = Y9 consists of q isolated points. Then KG(TY%= 
n?= i ^ ( ^ V a n ( i the7th component of &{co) is 

&(co) _ A - i ( M * ® C > ^ ( T Y ^ ) - A - ( T Y * ) 
' M J V , (8) C) ' k+(M0) - A_(M,) ' 
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where Mj9 Nj and TYi denote the representations of G defined by restricting 
N, M and TY to theyth isolated fixed point. 

In order to illustrate ideas for closed manifolds, observe that any quasi-
equivalence œ : N->M induces a G map co+ : N+->M+ of the one point 
compactifications. In particular, take the N and M of Example 1' and 
co = co0. Then N+ and M+ are smooth 4 spheres. Take Y=(M+)81. One 
finds that 0(coJ)^O. 

Contributions of subgroups Ha G. Each subgroup of G can be used 
to generate new obstructions via the following observation: If f :N->M 
is transverse to Y a M then ƒ H : NH-+MH is transverse to YH for each 
HaG; moreover, fH is a ( J / / / map. This means that if a^ is any trans­
versality obstruction defined for all topologically cyclic groups G, then 
^a/H(fH) is a transversality obstruction for the G map/ , i.e., oLG/H(fH)= 
âiïoif) is an obstruction for/. Actually each component of MHcontributes 
an obstruction. 

EXAMPLE 3. G=Sl. Let Çl=t*+tv+t*+t° be the complex 4-dimen-
sional S1 module where t G S1 acts with eigenvalues f*\ tp, tp and f °. 
Let Y=P(Q) be the space of complex lines in Q,. Then Y is an S1 manifold 
in an obvious way and if co0 : N-+M is the quasi-equivalence of Example 
I ' , then co0: YxN-^YxM and gsi(co0)=0 by the Product Lemma. On 
the other hand, (YxM)Zp consists of two components and each con­
tributes an obstruction 

for / = 1,2. Here SX\Z^ is identified with S1 with representation ring 
Z[f, t"1]. 

Equation (iii) provides the basis for an obstruction theory for G trans­
versality, but this and other details of G transversality including the case 
of finite isotropy groups will appear elsewhere. 
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