OBSTRUCTIONS TO TRANSVERSALITY FOR COMPACT LIE GROUPS

BY TED PETRIE¹

Communicated by Glen E. Bredon, January 21, 1974

Throughout G is a compact Lie group which is topologically cyclic with dense generator g. Let N and M be smooth G manifolds without boundary and $Y \subset M$ a closed invariant submanifold. All manifolds are oriented and G preserves orientation. Let $f: N \rightarrow M$ be a proper G map. When is f properly G homotopic to a map γ which is transverse regular to $Y \subset M$, written $\gamma \cap Y$? We introduce obstructions which show that transversality is a global phenomena in contrast to the case G=1 where everything is local and trivial.

Without loss of generality, we may assume that $f^g: N^g \to M^g$ is transverse to Y^g and set $X^g = (f^g)^{-1}(Y^g)$. For each oriented real G vector bundle vover X^g such that the G representation on each fiber of v has no trivial factor and g preserves orientation on each fiber, let $\lambda_{\pm}(v)$ be the \pm eigenbundles of the canonical involution τ on $\lambda(v \otimes C) = \sum \lambda^i (v \otimes C)$ constructed from the orientation and an inner product on v. Let $\lambda_{-1}(v \otimes C) =$ $\sum (-1)^i \lambda^i (v \otimes C), I^{X^g} \in K_G(TX^g)$ be the index class of X^g , i.e. the symbol of the operator D^+ . See [1, p. 575]. Let $\mathscr{P} \subset R(G)$ be the prime ideal of characters $\{X \in R(G) | X(g) = 0\}$ and

(i)
$$\mathscr{B}(v) = \frac{\lambda_{+}(v) - \lambda_{-}(v)}{\lambda_{-1}(v \otimes C)} \cdot I^{X^g} \in K_G(TX^g)_{\mathscr{P}}.$$

Let $f: X \to Y$ be a G map. If f is an embedding there is a homomorphism $f!: K_G(TX) \to K_G(TY)$ [1]. By taking the product of Y with a real G module and using the Thom isomorphism for complex G vector bundles, we may assume that f! is defined for any map f and denote it by f_* . The normal bundle of Y in M is denoted by v(Y, M). Its restriction to Y^g has a splitting

(ii)
$$(i^g)^* v(Y, M) = v(Y, M)^g + v_2(Y, M),$$

where $v(Y, M)^g$ is the subbundle of points fixed by g and $i^g: Y^g \to Y$ is

AMS (MOS) subject classifications (1970). Primary 57E15, 57D99.

¹ Author is a Guggenheim fellow; research partially supported by S.F.B. grant Bonn and S.R.C. grant Oxford.

Copyright @ American Mathematical Society 1974

TED PETRIE

the inclusion. Let $j^g: X^g \to N^g$ be the inclusion and define $\nu = \nu(f)$ by

(iii)
$$\nu + (f^g)^* \nu_2(Y, M) = (j^g)^* \nu(N^g, N)$$

and set

$$B_G = \mathscr{B}(\nu(f)) \in K_G(TX^g)_{\mathscr{P}}.$$

The inclusions of TN^g in TN and TY^g in TY are denoted by Th^g and Ti^g . Let $(\mathrm{Id}_G^{X^g})_{\mathscr{P}}: K_G(TX^g)_{\mathscr{P}} \to R(G)_{\mathscr{P}}$ be the localization of the Atiyah-Singer index homomorphism. The group of connected components of G is denoted by $\Pi_0(G)$. Define

(iv)
$$g(f) = (\mathrm{Id}_G^{X^g})_{\mathscr{P}}(B_G) \in R(G)_{\mathscr{P}}/R(\Pi_0(G)),$$

(v)
$$l(f) = \lambda_{-1}(\nu(N^g, N) \otimes C) \cdot j^g_*(B_G) \in K_G(TN^g)_{\mathscr{P}}/(Th^g)^*K_G(TN),$$

(vi)
$$\mathcal{O}(f) = \lambda_{-1}(\nu(Y^g, Y) \otimes C) f^g_*(B_G) \in K_G(TY^g)_{\mathscr{P}}/(Ti^g)^*K_G(TY).$$

THEOREM 1. If $f: N \rightarrow M$ is properly G homotopic to γ and $\gamma \cap Y$, then g(f), l(f) and $\mathcal{O}(f)$ are zero.

PROOF. Suppose $f \cap Y$ and $X = f^{-1}(Y)$. Then $g(f) = \text{Sign}(G, X) \in R(\Pi_0(G))$; moreover, $\mathcal{O}(f) = (Ti^g)^* f_*(I^X)$, where $I^X \in K_G(TX)$ is the index class of X. Similarly one sees that l(f) = 0.

The notion of fiber homotopy equivalence is extended to the category of G vector bundles as follows: Let N and M be two (real) G bundles over a G space Y. A G map $\omega: N \rightarrow M$ is called a *quasi-equivalence* if ω is proper, fiber preserving and degree 1 on fibers. The notion of normal map is extended to the category of smooth, closed G manifolds as follows: A *normal* G map $f: X \rightarrow Y$ consists of a triple [X, f, F] where $f: X \rightarrow Y$ is a G map of degree 1 and F is a bundle map $F: TX + f^*(N) \rightarrow TY + M$ covering f for some pair of G bundles N and M over Y. When G=1 the set of normal cobordism classes of normal maps to Y and the set of fiber homotopically equivalent bundles with appropriate equivalence relation are in 1-1 correspondence. Transversality provides the correspondence. For general G and quasi-equivalence $\omega: N \rightarrow M$, the obstructions $g(\omega)$, $l(\omega)$ and $\mathcal{O}(\omega)$ to making $\omega \cap Y$ give obstructions to converting a quasi-equivalence to a normal G map.

EXAMPLE 1. Let $G=S^1$ with dense generator t. Let N and M be two complex S^1 vector bundles over a closed S^1 manifold Y. To simplify the formula, we assume $N^t = M^t = Y^t$. The restrictions \tilde{N} and \tilde{M} of N and M to Y^t have real splittings $\tilde{N} = \sum_{n>0} N_n$, $\tilde{M} = \sum_{n>0} M_n$ where, e.g., N_n is the subbundle on which t acts by multiplication by t^n . Similarly, $v(Y^t, Y)$ has such a splitting. Let

(vii)
$$A(t, \tilde{N}) = \prod_{n>0} \prod_{j} \frac{t^n e^{x_j} + 1}{t^n e^{x_j} - 1} (N_n) \in H^*(Y^t, C),$$

[November

where the elementary symmetric functions of the $x_j = x_j(N_n)$ are the Chern classes of N_n ,

(viii)
$$L'(TY^t) = \prod \frac{x_i}{\tanh(x_i/2)} (TY^t) \in H^*(Y^t, C),$$

where the elementary symmetric functions of the x_i^2 are the Pontrjagin classes of Y^t .

The ring $R(S^1)_{\mathscr{P}}$ is contained in the field Q(t) of rational functions of t. The obstruction $g(\omega) \in Q(t)/Z$ (Z = R(1)) is given by the rational function

(ix)
$$g(\omega)(t) = \left\langle A(t, \nu(Y^t, Y)) \frac{A(t, \tilde{N})}{A(t, \tilde{M})} L'(TY^t), [Y^t] \right\rangle$$

where $\langle \alpha, [Y^t] \rangle$ denotes evaluation of the cohomology class α on the orientation class $[Y^t] \in H_*(Y^t, C)$. Observe that the obstruction $g(\omega)$ does not depend on ω . Essentially the reason is that S^1 is connected. (Compare (ix) with [1, (7.7)].)

EXAMPLE 1'. As a very special illustration of (ix), take Y to be a point and N and M the complex two-dimensional S^1 modules $N=t^p+t^q$ and $M=t+t^{pq}$, (p,q)=1, where $t \in S^1$ acts with eigenvalues t^p and t^q , respectively, t and t^{pq} . We view N and M as S^1 vector bundles over Y. Choose positive integers a and b such that -ap+bq=1. Let $z=(z_0, z_1)$ be complex coordinates of a point $z \in N$ and set $\omega_0(z)=(\overline{z}_0^a \overline{z}_1^b, z_0^q+z_1^p)$. Then ω_0 is a proper S^1 map and has degree 1; moreover,

(x)
$$g(\omega_0)(t) = \frac{(t^p + 1)(t^q + 1)(t - 1)(t^{pq} - 1)}{(t^p - 1)(t^q - 1)(t + 1)(t^{pq} + 1)} \in \frac{Q(t)}{Z}.$$

PRODUCT LEMMA 3. Let N and M be two complex G modules viewed as G bundles over a point, and $\omega: N \rightarrow M$ a quasi-equivalence. Then ω induces a quasi-equivalence $\tilde{\omega}: Y \times N \rightarrow Y \times M$ for any closed G manifold Y and

$$g(\tilde{\omega}) = \operatorname{Sign}(G, Y) \cdot g(\omega).$$

COROLLARY 4. Let Y be a closed S^1 manifold with $\text{Sign}(Y) = \text{Sign}(1, Y) \neq 0$. Let $\omega_0: N \rightarrow M$ and $\tilde{\omega}_0: Y \times N \rightarrow Y \times M$ be as above. Then $g(\tilde{\omega}_0) \neq 0$.

EXAMPLE 2. Let $\omega: N \to M$ be a quasi-equivalence of G bundles over Y. Assume $N^g = M^g = Y^g$ consists of q isolated points. Then $K_G(TY^g)_{\mathscr{P}} = \prod_{j=1}^{q} R(G)_{\mathscr{P}}$ and the *j*th component of $\mathcal{O}(\omega)$ is

$$\mathscr{O}(\omega)_j = \frac{\lambda_{-1}(M_j \otimes C)}{\lambda_{-1}(N_j \otimes C)} \cdot \frac{\lambda_{+}(TY_j) - \lambda_{-}(TY_j)}{\lambda_{+}(M_j) - \lambda_{-}(M_j)},$$

where M_j , N_j and TY_j denote the representations of G defined by restricting N, M and TY to the *j*th isolated fixed point.

In order to illustrate ideas for closed manifolds, observe that any quasiequivalence $\omega: N \rightarrow M$ induces a G map $\omega^+: N^+ \rightarrow M^+$ of the one point compactifications. In particular, take the N and M of Example 1' and $\omega = \omega_0$. Then N^+ and M^+ are smooth 4 spheres. Take $Y = (M^+)^{S^1}$. One finds that $\mathcal{O}(\omega_0^+) \neq 0$.

Contributions of subgroups $H \subset G$. Each subgroup of G can be used to generate new obstructions via the following observation: If $f: N \to M$ is transverse to $Y \subset M$ then $f^H: N^H \to M^H$ is transverse to Y^H for each $H \subset G$; moreover, f^H is a G/H map. This means that if $\alpha_{\overline{G}}$ is any transversality obstruction defined for all topologically cyclic groups \overline{G} , then $\alpha_{G/H}(f^H)$ is a transversality obstruction for the G map f, i.e., $\alpha_{G/H}(f^H) = \mathscr{B}_G(f)$ is an obstruction for f. Actually each component of M^H contributes an obstruction.

EXAMPLE 3. $G=S^1$. Let $\Omega=t^p+t^p+t^p+t^0$ be the complex 4-dimensional S^1 module where $t \in S^1$ acts with eigenvalues t^p , t^p , t^p and t^0 . Let $Y=P(\Omega)$ be the space of complex lines in Ω . Then Y is an S^1 manifold in an obvious way and if $\omega_0: N \rightarrow M$ is the quasi-equivalence of Example 1', then $\tilde{\omega}_0: Y \times N \rightarrow Y \times M$ and $g_{S^1}(\omega_0)=0$ by the Product Lemma. On the other hand, $(Y \times M)^{Z_p}$ consists of two components and each contributes an obstruction

$$g_{S^{1}/Z_{p}}(\tilde{\omega}_{0}^{Z_{p}})_{i} = \frac{t^{1}+1}{t^{1}-1}\frac{t^{q}-1}{t^{q}+1} \in \frac{Q(t)}{Z}$$

for i=1, 2. Here S^1/Z_p is identified with S^1 with representation ring $Z[t, t^{-1}]$.

Equation (iii) provides the basis for an obstruction theory for G transversality, but this and other details of G transversality including the case of finite isotropy groups will appear elsewhere.

BIBLIOGRAPHY

1. M. F. Atiyah and I. M. Singer, *The index of elliptic operators*. I, III, Ann. of Math. (2) 87 (1968), 484–530, 546–604. MR 38 #5243; #5245.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903

1136