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Unless otherwise stated, K is an arbitrary infinite regular cardinal. For 
every infinite cardinal K, JJLK is the family of uniform ultrafilters on K. Our 
main result is: 

THEOREM 1. Suppose that 2K = K+ . Then for every UEyjc there 
is a family {ax: x G U} such that: for every x E U, ax C x and \ax\ = 
K; and for every x, y E U with x ¥* y, \ax n ay\<n. 

This answers a question of Comfort communicated privately to the author 
and partially answers a question of Hindman [5]. It is still open whether 
Theorem 1 holds for singular K as well. The hypothesis 2K = K+ cannot 
be outright removed, since by [1] it is consistent with ZFC that there is no 
A C P(K) such that \A | = 2K, \a\ = K for every a E A, and \a O b\ < K 
for every a, b E A with a =£ b. See [4], [5] and [8] for other relevant 
results. 

DEFINITION 1. For >1CJP(K) and ideal ICP(K)9I is said to be 
dense in A modulo sets of power < K if for each xEA such that |JC| = 
K, there is some y EI with y C x and \y\ = K. For brevity we shall 
write "ƒ is dense in A mod(< K)'\ I is dense mod(< K) if I is dense in 
P(K) mod(<K). 

"ƒ is X-complete" is defined as in [7]. 

THEOREM 2. For every U Eyx. there is a K-complete ideal I C 
P(K) - U such that I is dense mod(</c). 

Theorem 1 follows from Theorem 2 by induction on ordinals < K+, 
ax(x E U) being chosen to belong to /. See [8, Theorem 1] . 
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Theorem 2 for K = co is trivial—let / = P(to) - U. Thus from now on, 
K > co. Theorem 2 follows from Lemma 1 and Lemma 1 clearly follows from 
Lemmas 2 and 3. 

LEMMA 1. If UE [IK, then there is a K-complete ideal I C P(K) - U 
which is dense in U mod(< K). 

To prove Theorem 2, let / be as in Lemma 1 and set x G T iff there 
are JC0, xx such that x = x0 U xv x0 GI and there is no y G I with 
y C xx and \y\ = K. Then T is as required. 

For f,g€KK we shall write f^g (mod £/) oi f<g (mod 60 if 

(P: ƒ(/>) = #(/>)} G #" o r {P: /(/>) <i(P)} E ^ respectively. 
DEFINITION 2 [2]. UG p.K is regular if there is a family X = 

{Xçi J E K } C ( / such that for every infinite S C K, C\{x^: £ G S } = 0. 
DEFINITION 3 [6]. fGKK is almost one-to-one if for each p G K, 

i r 1 ( { p } ) K ' c 
DEFINITION 4. ƒ G KK is bounded mod £/ if for some a G K, 

{p G K: ƒ(/>) < a } E [ / , Otherwise ƒ is unbounded mod U. 
DEFINITION 5. UGJIK is weakly selective if for every fGKK which 

is unbounded mod U there is an almost one-to-one g G *K such that 
f ~ g (mod (7). 

LEMMA 2. /ƒ UE pK is either regular or not weakly selective, then 
there is a K-complete I C P(K) - U which is dense in U mod(< K). 

PROOF. See [8, Theorems 5 and 11]. In outline, the proofs are as fol
lows. Suppose first that U is regular. Let X = {x^: £ G K } be as in 
Definition 2. Set 

ƒ = {yçK: 3 T ? < * V « t ? < * . < K - + l * E n ^ | < J C ) } . 

Then ƒ is the desired ideal. 
If U is not weakly selective, fix ƒ G *K unbounded mod U and such 

that there is no almost one-to-one g with g ~ ƒ (mod £/). Set 

7 = 0 / C K : Vp < K(LF H / - ^ { p } ) ! < jc)}. 

LEMMA 3. If US tin is weakly selective and not regular, then there 
is a K-complete ideal I C P(K) - U which is dense in U mod(< K). 
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The next crucial lemma needed in the proof of Lemma 3 is due to A. 
Kanamori [6]. 

LEMMA 4 [6]. If UG JJLK is not regular then there is a least (mod If) 
almost one-to-one function f E KK. 

PROOF IN OUTLINE. Suppose that Lemma 4 is false. One can then 
construct by induction almost one-to-one functions f0LEKK (a E /c) such 
that for all a < j3 < K, fp <fa (mod If), and in addition, if j3 is limit, then 
for all a < |3 and all p E K, fp(p) <fa(p). We now define sets xa E U 
(a < fc, a successor) as follows. If a = y + n where y < K, y is limit and 
1 < n E co, then 

*<*= {P<K: Vm E co(0 <m <n - + ƒ » < / 7 + m ( p ) ) } . 

It can be shown that {xa: a < K, a successor } regularizes U. 

LEMMA 5. If U E JJLK is weakly selective and not regular then there is 

a least (mod If) f E KK unbounded mod U. 

PROOF. Immediate from Lemma 4. 

LEMMA 6. (SCOTT, SEE [7, THEOREM 1.8]). Let U^IXK and feKn 
be as in Lemma 5. Set V= {x C K: f~x(x) E U}. Then Ve^xK and the 
identity is a least (mod V) function unbounded mod V. Moreover V 
extends the filter of closed unbounded subsets of K. 

SKETCH OF THE PROOF OF LEMMA 3. Let U, f and V be as in Lemma 6. 
Let / be the ideal of those x C K such that K - x contains a closed un
bounded subset of K. By Lemma 6, / C P(K) - V. It is well known that / 
is K -complete and dense mod(< /c). Set 

I={yÇK: IxeJiyCf-^x))}. 
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