THE q-REGULARITY OF LATTICE POINT PATHS IN \boldsymbol{R}^{n}

BY JEROME L. PAUL

Communicated by Dock S. Rim, October 31, 1974

1. Introduction. Given any set X and a cardinal number q, then, following Rado [4], a collection S of sets is called q-regular in X if, whenever X is partitioned into q parts, then at least one part contains as a subset a member of S. More generally, by requiring the partitions of X to belong to a given preassigned family F, we obtain the notion of q-regularity in X relative to F. Letting N denote the positive integers, given $q \in N$, it is convenient to regard a partition of a set X into q parts as a function $f: X \rightarrow Z_{q}$, where Z_{q} denotes the ring of integers modulo q. The partition $P(f)=\left\{f^{-1}(\bar{m}): m \in N\right\}$ of X is said to be represented by f, where \bar{m} denotes the residue class in Z_{q} containing $m \in N$. Given $f: X \rightarrow Z_{q}, g: Y \rightarrow Z_{q}$, then, as in [2], we obtain a partition $f \oplus g: X \times Y \rightarrow Z_{q}$ by the formula $(f \oplus g)(x, y)=f(x)+g(y)$, where the sum on the right takes place in Z_{q}. If $A \subseteq R^{n}$ is a subset of euclidean n-space R^{n}, let $F^{\oplus}(A)$ denote the family consisting of those partitions of A which are representable by functions $\left(f_{1} \oplus \cdots \oplus f_{n}\right) \mid A: A \rightarrow Z_{q}$, where f_{i} : $R \rightarrow Z_{q}, i=1, \cdots, n$, and where $g \mid A$ denotes the restriction of the function g to A.

A (linear) lattice point path in R^{n} shall mean the intersection of a connected subset of a straight line in R^{n} with the lattice points $Z^{n} \subset R^{n}$, where Z denotes the set of integers. Adding a maximal element ∞ to R, and given any $j \in N^{*}=N \cup\{\infty\}$, let L_{j} denote the collection of lattice point paths obtainable from lines which have a set of integer direction numbers bounded in absolute value by j, and let $S_{j, k} \subset L_{j}$ denote the subcollection of L_{j} consisting of those paths which contain k points, $k \in N^{*}$.

Given any $A \subseteq R^{n}, j \in N^{*}$, and $q \in N$, we then define

$$
\rho_{j, q}(A)=\sup \left\{k \in N: S_{j, k} \text { is } q \text {-regular in } A\right\}
$$ $\rho_{j, q}^{\oplus}(A)=\sup \left\{k \in N: S_{j, k}\right.$ is q-regular in A relative to $\left.F^{\oplus}(A)\right\}$,

where we set $\rho_{j, q}(A)=\rho_{j, q}^{\oplus}(A)=0$ if $A \cap Z^{n}=\varnothing$.

Note that the functions $\rho_{j, q}, \rho_{j, q}^{\oplus}$ are monotone, and that $\rho_{j, q}(A) \leqslant$ $\rho_{j, q}^{\oplus}(A)$ for all $A \subseteq R^{n}$. The case $j=1, q=2$ is of special interest, so that we then suppress the subscripts, writing $\rho=\rho_{1,2}, \rho^{\oplus}=\rho_{1,2}^{\oplus}$. For example, one of our main results is the formula $\rho^{\oplus}\left(Z^{n}\right)=n, n \in N$, where we conjecture that this formula also holds when ρ^{\oplus} is replaced by ρ (it does hold for ρ when $n \leqslant 3$). Also, letting $C^{n}(m)$ denote an n-dimensional hypercube of lattice points having m points on a side, $C^{n}(m)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in Z^{n}: 1 \leqslant x_{i} \leqslant m\right.$, $i=1, \cdots, n\}$, note that $\rho\left(C^{n}(m)\right) \leqslant m$, where the equality $\rho\left(C^{n}(m)\right)=m$ can be interpreted to imply that n-dimensional Tic-Tac-Toe cannot be played to a tie in $C^{n}(m)$ (where a winning set in $C^{n}(m)$ consists of m points in a straight line). The following proposition has a simple verification.

Proposition 1. $\rho^{\oplus}\left(C^{n}(n)\right)=n, n \in N$.
2. Statement of main results. The following three theorems represent our main results on ρ, ρ^{\oplus}, and $\rho_{\infty, 2}^{\oplus}$.

Theorem 1. $\rho^{\oplus}\left(Z^{n}\right)=n, n \in N$.
Theorem 2. $\rho\left(C^{n}(n)\right) \leqslant n-1, n \geqslant 4$.
Theorem 3. $\rho_{\infty, 2}^{\oplus}\left(Z^{n}\right) \leqslant 2 n-1, n \in N$.
Remarks. 1. Theorem 2 is surprising in view of the contrasting fact that $\rho\left(C^{n}(n)\right)=n, n \leqslant 3$ (compare also with Proposition 1). Hales and Jewett have shown [2, Theorem 5] that the winning sets in $C^{n}(n+1)$ are not 2-regular in $C^{n}(n+1), n \in N$, i.e., in our terminology, $\rho\left(C^{n}(n+1)\right) \leqslant n$. They actually show (again in our terminology) that $\rho^{\oplus}\left(C^{n}(n+1)\right) \leqslant n$, although it turns out that the partitions they use cannot be extended to partitions of Z^{n} satisfying the requirements of Theorem 1. Note that the result $\rho\left(C^{n}(n+1)\right)$ $\leqslant n$ also follows immediately from Theorem 1 , while Theorem 2 improves this latter result in the dimensions $n \geqslant 4$. Even in case the winning sets in $C^{n}(m)$ are not 2-regular in $C^{n}(m)$, it still might not be possible for the second player to force a tie. For results on when the second player can force a tie, see [1] and [2].
2. To obtain a function dependent upon $\rho_{j, q}$, but which, unlike $\rho_{j, q}$, is invariant under affine isomorphisms of R^{n}, we define, for $A \subseteq R^{n}$,

$$
\lambda_{j, q}=\sup \left\{\rho_{j, q}(f(A)): f: R^{n} \rightarrow R^{n} \text { is an affine map }\right\}
$$

with $\lambda_{j, q}^{\oplus}$ defined similarly using $\rho_{j, q}^{\oplus}$ in place of $\rho_{j, q}$. Setting $\lambda=\lambda_{1,2}, \lambda^{\oplus}=$ $\lambda_{1,2}^{\oplus}$, we see from Proposition 1 and Theorem 1 that λ^{\oplus} distinguishes in a
natural geometric-combinatorial way amongst the various euclidean spaces. Indeed, we have the following corollary, which we conjecture also holds for λ.

Corollary 1. $\lambda^{\oplus}(U)=n$, whenever U is a nonempty open set in R^{n}, $n \in N$.
3. Description of the partitions used in our main results. Given $m \in N$, let $\tau_{m}: Z \rightarrow Z, \phi_{m}: Z \rightarrow Z$ be defined by $\tau_{m}(x)=x+m, \phi_{m}(x)=[x / m]$, where $[y]$ denotes the greatest integer $\leqslant y$. Theorems 1,2 , and 3 depend on a remarkable sequence $\left\{g_{n}\right\}$ of functions from Z into Z_{2} defined by the formulas
I. $g_{1}(x)=\bar{x} \quad(x \in Z)$,
II. $g_{2^{m}}=g_{1} \circ \phi_{2^{m}}(m \in N)$,
III. $g_{n-1}=g_{n}+g_{n} \circ \tau_{1} \quad(n \geqslant 2)$.

These are overdefinitions, but turn out to be consistent. Theorem 1 is verified using the function $g_{1} \oplus \cdots \oplus g_{n}: Z^{n} \rightarrow Z_{2}$, while Theorem 3 is verified using $g_{n} \oplus \cdots \oplus g_{2 n-1}: Z^{n} \rightarrow Z_{2}$. Theorem 2 is verifed by the restriction, to a suitable translate of $C^{n}(n)$, of $f \oplus g_{1}$, when $n=4$, and of $f \oplus g_{1} \oplus g_{4} \oplus \cdots$ $\oplus g_{n-1}$, when $n \geqslant 5$, where $f: Z^{3} \rightarrow Z_{2}$ is suitably defined. The proofs that the above functions do the job depend on a rather involved analysis of the subgroup of $\left(Z_{2}\right)^{Z}$ generated by g_{1}, \cdots, g_{n}. This analysis, together with additional details and results, is contained in [3].

REFERENCES

1. P. Erdös and J. L. Selfridge, On a combinatorial game, J. Combinatorial Theory Ser. B 14 (1973), 298-301.
2. A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-229. MR 26 \#1265.
3. J. L. Paul, Partitioning the lattice points in R^{n} (to appear).
4. R. Rado, Note on combinatorial analysis, Proc. London Math. Soc. (2) 48 (1943), 122-160. MR 5,87.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF CINCINNATI, CINCINNATI, OHIO 45221

