THE q-REGULARITY OF LATTICE POINT PATHS IN R^n

BY JEROME L. PAUL

Communicated by Dock S. Rim, October 31, 1974

1. Introduction. Given any set X and a cardinal number q, then, following Rado [4], a collection S of sets is called q-regular in X if, whenever X is partitioned into q parts, then at least one part contains as a subset a member of S. More generally, by requiring the partitions of X to belong to a given preassigned family F, we obtain the notion of q-regularity in X relative to F. Letting N denote the positive integers, given $q \in N$, it is convenient to regard a partition of a set X into q parts as a function $f: X \to Z_q$, where Z_q denotes the ring of integers modulo q. The partition $P(f) = \{f^{-1}(\overline{m}): m \in N\}$ of X is said to be represented by f, where \overline{m} denotes the residue class in Z_q containing $m \in N$. Given $f: X \to Z_q$, $g: Y \to Z_q$, then, as in [2], we obtain a partition $f \oplus g: X \times Y \to Z_q$ by the formula $(f \oplus g)(x, y) = f(x) + g(y)$, where the sum on the right takes place in Z_a . If $A \subseteq \mathbb{R}^n$ is a subset of euclidean *n*-space \mathbb{R}^n , let $\mathcal{F}^{\oplus}(A)$ denote the family consisting of those partitions of A which are representable by functions $(f_1 \oplus \cdots \oplus f_n)|A: A \to Z_q$, where f_i : $R \rightarrow Z_q, i = 1, \cdots, n$, and where g|A denotes the restriction of the function g to A.

A (linear) lattice point path in \mathbb{R}^n shall mean the intersection of a connected subset of a straight line in \mathbb{R}^n with the lattice points $\mathbb{Z}^n \subset \mathbb{R}^n$, where \mathbb{Z} denotes the set of integers. Adding a maximal element ∞ to \mathbb{R} , and given any $j \in \mathbb{N}^* = \mathbb{N} \cup \{\infty\}$, let L_j denote the collection of lattice point paths obtainable from lines which have a set of integer direction numbers bounded in absolute value by j, and let $S_{j,k} \subset L_j$ denote the subcollection of L_j consisting of those paths which contain k points, $k \in \mathbb{N}^*$.

Given any $A \subseteq \mathbb{R}^n$, $j \in \mathbb{N}^*$, and $q \in \mathbb{N}$, we then define

$$\rho_{i,q}(A) = \sup \{k \in N: S_{i,k} \text{ is } q \text{-regular in } A\},\$$

 $\rho_{i,q}^{\oplus}(A) = \sup\{k \in N: S_{i,k} \text{ is } q \text{-regular in } A \text{ relative to } F^{\oplus}(A)\},\$

where we set $\rho_{j,q}(A) = \rho_{j,q}^{\oplus}(A) = 0$ if $A \cap Z^n = \emptyset$.

AMS (MOS) subject classifications (1970). Primary 05B99, 10E99.

Copyright © 1975, American Mathematical Society

Note that the functions $\rho_{j,q}$, $\rho_{j,q}^{\oplus}$ are monotone, and that $\rho_{j,q}(A) \leq \rho_{j,q}^{\oplus}(A)$ for all $A \subseteq \mathbb{R}^n$. The case j = 1, q = 2 is of special interest, so that we then suppress the subscripts, writing $\rho = \rho_{1,2}, \rho^{\oplus} = \rho_{1,2}^{\oplus}$. For example, one of our main results is the formula $\rho^{\oplus}(Z^n) = n, n \in N$, where we conjecture that this formula also holds when ρ^{\oplus} is replaced by ρ (it *does* hold for ρ when $n \leq 3$). Also, letting $\mathbb{C}^n(m)$ denote an *n*-dimensional hypercube of lattice points having *m* points on a side, $\mathbb{C}^n(m) = \{(x_1, \dots, x_n) \in \mathbb{Z}^n : 1 \leq x_i \leq m, i = 1, \dots, n\}$, note that $\rho(\mathbb{C}^n(m)) \leq m$, where the equality $\rho(\mathbb{C}^n(m)) = m$ can be interpreted to imply that *n*-dimensional Tic-Tac-Toe *cannot* be played to a tie in $\mathbb{C}^n(m)$ (where a winning set in $\mathbb{C}^n(m)$ consists of *m* points in a straight line). The following proposition has a simple verification.

PROPOSITION 1. $\rho^{\oplus}(C^n(n)) = n, n \in N$.

2. Statement of main results. The following three theorems represent our main results on ρ , ρ^{\oplus} , and $\rho_{\infty,2}^{\oplus}$.

THEOREM 1. $\rho^{\oplus}(Z^n) = n, n \in N.$ THEOREM 2. $\rho(C^n(n)) \leq n - 1, n \geq 4.$ THEOREM 3. $\rho^{\oplus}_{\infty,2}(Z^n) \leq 2n - 1, n \in N.$

REMARKS. 1. Theorem 2 is surprising in view of the contrasting fact that $\rho(C^n(n)) = n, n \leq 3$ (compare also with Proposition 1). Hales and Jewett have shown [2, Theorem 5] that the winning sets in $C^n(n + 1)$ are not 2-regular in $C^n(n + 1), n \in N$, i.e., in our terminology, $\rho(C^n(n + 1)) \leq n$. They actually show (again in our terminology) that $\rho^{\oplus}(C^n(n + 1)) \leq n$, although it turns out that the partitions they use *cannot* be extended to partitions of Z^n satisfying the requirements of Theorem 1. Note that the result $\rho(C^n(n + 1)) \leq n$ also follows immediately from Theorem 1, while Theorem 2 improves this latter result in the dimensions $n \geq 4$. Even in case the winning sets in $C^n(m)$ are not 2-regular in $C^n(m)$, it still might not be possible for the second player to force a tie. For results on when the second player *can* force a tie, see [1] and [2].

2. To obtain a function dependent upon $\rho_{j,q}$, but which, unlike $\rho_{j,q}$, is invariant under affine isomorphisms of \mathbb{R}^n , we define, for $A \subseteq \mathbb{R}^n$,

$$\lambda_{i,q} = \sup \{ \rho_{i,q}(f(A)) : f: \mathbb{R}^n \to \mathbb{R}^n \text{ is an affine map} \},\$$

with $\lambda_{j,q}^{\oplus}$ defined similarly using $\rho_{j,q}^{\oplus}$ in place of $\rho_{j,q}$. Setting $\lambda = \lambda_{1,2}$, $\lambda^{\oplus} = \lambda_{1,2}^{\oplus}$, we see from Proposition 1 and Theorem 1 that λ^{\oplus} distinguishes in a

natural geometric-combinatorial way amongst the various euclidean spaces. Indeed, we have the following corollary, which we conjecture also holds for λ .

COROLLARY 1. $\lambda^{\oplus}(U) = n$, whenever U is a nonempty open set in \mathbb{R}^n , $n \in \mathbb{N}$.

3. Description of the partitions used in our main results. Given $m \in N$, let $\tau_m: Z \to Z, \phi_m: Z \to Z$ be defined by $\tau_m(x) = x + m, \phi_m(x) = [x/m]$, where [y] denotes the greatest integer $\leq y$. Theorems 1, 2, and 3 depend on a remarkable sequence $\{g_n\}$ of functions from Z into Z_2 defined by the formulas

I. $g_1(x) = \overline{x} \quad (x \in Z),$

II. $g_{2m} = g_1 \circ \phi_{2m} \quad (m \in N),$

III. $g_{n-1} = g_n + g_n \circ \tau_1$ $(n \ge 2)$.

These are overdefinitions, but turn out to be consistent. Theorem 1 is verified using the function $g_1 \oplus \cdots \oplus g_n$: $Z^n \to Z_2$, while Theorem 3 is verified using $g_n \oplus \cdots \oplus g_{2n-1}$: $Z^n \to Z_2$. Theorem 2 is verified by the restriction, to a suitable translate of $C^n(n)$, of $f \oplus g_1$, when n = 4, and of $f \oplus g_1 \oplus g_4 \oplus \cdots \oplus g_{n-1}$, when $n \ge 5$, where $f: Z^3 \to Z_2$ is suitably defined. The proofs that the above functions do the job depend on a rather involved analysis of the subgroup of $(Z_2)^Z$ generated by g_1, \cdots, g_n . This analysis, together with additional details and results, is contained in [3].

REFERENCES

1. P. Erdös and J. L. Selfridge, On a combinatorial game, J. Combinatorial Theory Ser. B 14 (1973), 298-301.

2. A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-229. MR 26 #1265.

3. J. L. Paul, Partitioning the lattice points in R^n (to appear).

4. R. Rado, Note on combinatorial analysis, Proc. London Math. Soc. (2) 48 (1943), 122-160. MR 5,87.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF CINCINNATI, CINCINNATI, OHIO 45221

494