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Stochastic differential equations: theory and applications, by L. Arnold, 
Wiley-Interscience, New York, 1974, xvi+228 pp., $17.95 

Stochastic differential systems. I: Filtering and control, a function space 
approach, by A. V. Balakrishnan, Lecture Notes in Economics and 
Mathematical Systems, vol. 84, Springer-Verlag, Berlin, 1973, v+252 pp., 
$8.20 

The description of Brownian motion given by Einstein is based on an 
idealization—that increments of a particle's position over disjoint time 
intervals are independent random quantities. This leads to a probabilistic 
model, the Wiener process, in which a random trajectory, although continu
ous, is nowhere differentiable. In spite of this physically rather unrealistic 
feature of the theory, certain formal properties of the nonexistent derivative 
suggest that the derivative be included in some fashion in mathematical 
models of physical processes affected by noise. The relevance of Brownian 
motion is best described heuristically: since the formal derivative of a 
trajectory would be a limit of Brownian increments, the random values at 
different times would be stochastically independent. Such a trajectory would 
represent fluctuations uncorrelated in time, and hence the trajectory would 
serve as a graph of noise, for example, in electromagnetic transmission 
problems or electrical system problems. Moreover, the Fourier transform of 
such a trajectory would be a random function of the frequency with constant 
variance for all frequencies. That is, the derivative would be a uniform 
superposition of frequencies and thus would represent "white" noise. 

The work of Wiener, Langevin, K. Ito, and others has shown that certain 
integrals of the derivative may be defined rigorously. Wiener found that 
definite integrals of white noise weighted by a fixed square-integrable 
function of the time parameter exist as random functions. Ito extended the 
definition and developed an elegant theory for integrals where the weight 
function varies with the trajectory under the restriction that the weight for a 
fixed time is a function only of the trajectory history up to that time. 

The first half of each book under review presents a portion of the Ito theory 
and the second half includes treatments of two problems associated with 
mathematical models given by the system: 

(1) X(t) = f A(s)X(s) ds + [ B(s) dW(s), 

(2) Y(t)= \c(s)X(s) ds+ [D(S) dW(s). 
Jo Jo 

Here , W(s) denotes a vector whose components are scalar-valued indepen
dent Wiener processes and A , B , C, D , are given matrix-valued functions of 
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the time parameter. Equations such as (1) are referred to as stochastic 
differential equations (of Ito type), the term "differential" being used 
precisely, that is, referring to entities which are defined by their integrals. The 
random solution of equation (1) then determines the random process Y(t) in 
equation (2). 

Of course, the above system is rather trivially coupled. However, an 
important mathematical problem is suggested by the modeling situation. The 
random function X(0 corresponds to the actual state of some physical 
process; Y(t) corresponds to the observation of the state which, according to 
(2), includes additional noise which may even be independent of the noise in 
(1) if one has D(s)B*(s) = 0. The problem of finding the best estimate for 
X(t) using knowledge of Y(s), O^s^f, is the optimal filtering problem. A 
solution of this problem which is satisfactory for applications was given for a 
more general situation in 1960 by R. S. Bucy and R. E. Kalman. 

The authors' different motivations for producing these books are revealed 
by the different manner in which they treat the filtering problem. L. Arnold, 
in Chapter 12, gives a brief survey of recent work on filtering for a model in 
which (1) is replaced by a nonlinear Ito type equation in X(t). Then, as an 
example, he discusses the special features of the solution for the system given 
by equations (1) and (2): the optimal estimate for X(t) is a linear integral 
operator evaluated on Y(s) and the estimate may be alternately expressed as 
an integral of previous estimates and past observations. The reader is referred 
to various references for proofs of the theorems. 

Balakrishnan, in Chapter VI, gives a detailed, self-contained derivation of 
the Bucy-Kalman filter, and the derivation is based on the following nice idea. 
If the process X(f) in equation (2) is replaced by the difference between itself 
and the optimal estimate, the resulting process, Y(f), is a martingale. In 
addition, a second martingale arises if an appropriate integral of past optimal 
estimates is subtracted from the estimate. Then this latter martingale can be 
optimally estimated in an explicit manner from the first martingale. This new 
estimate is a linear stochastic integral of the first martingale over its past and 
the nonrandom weight function is explicit. Since the desired estimate is 
characterized as being the conditional expectation of X(t) relative to all past 
events determined by the observation process, it suffices to check that the past 
events determined by the first martingale agree with those of the observation 
process. This is carried out and one recovers the optimal estimate for X(t). 
This derivation illustrates why the theory of Ito integrals is so useful for the 
investigation of such systems. The random processes which arise are Marko-
vian and are amenable to the techniques of analysis developed for such 
processes. In addition, since equations (1) and (2) are linear in X(t), the 
processes are jointly Gaussian and one may say quite a bit about each path 
space measure. Balakrishnan confines his attention to such systems and 
obtains (known) results such as the absolute continuity of the processes, after 
a linear normalization, relative to the path space measure for the Wiener 
process; also, in Chapters IV and V, expressions for the Radon-Nikodym 
derivative are obtained. In Chapter VIII these results are applied to the 
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problem of identifying the matrices A(s), B(s) in equation (1) if only C(s), 
D(s) are known. Under some minor restrictions on the relation of the 
matrices, a procedure for the estimation based on maximizing the expression 
for the Radon-Nikodym derivative is established. Throughout these notes 
only the minimal amount of background material is introduced which is 
necessary for the formulation and solution of the particular filtering and 
control problems considered. The notes are mathematically self-contained 
and are tightly organized so that the material in the first six chapters is applied 
in the remaining two chapters. 

Questions involving the appropriateness of the white noise process for 
modeling physical noise or the existence of alternate models of noise are not 
discussed in the notes by Balakrishnan but are considered in the book by 
Arnold. In Chapter 3, Arnold discusses the interpretation of white noise as a 
generalized process; that is, a random distribution determined by a certain 
probability measure on the Schwartz space of tempered distributions in the 
time parameter. He points out that there is in fact a fairly large class of 
generalized processes which may serve as models of noise. In a discussion of 
approximation questions in Chapter 10, it is shown that a limit of solutions for 
equations where white noise is approximated by slightly correlated noise is 
not necessarily the solution of the corresponding Ito differential equation. 
Such a limit, for certain systems, is shown to satisfy another type of stochastic 
equation, studied by Stratonovich. This disparity is studied in detail. The 
book presents more of the Ito theory than the notes by Balakrishnan. The 
Markov nature of solutions for nonlinear versions of equation (1) is discussed 
in Chapter 9 and stability of such systems is studied in Chapter 11. Typically, 
a discussion of a topic begins with a quite general formulation, and the known 
major results are reported with appropriate references. Then the theory is 
illustrated with examples. This provides the reader with an overview of the 
subject which is missing in Balakrishnan's notes. As a consequence, much of 
the latter half of the book is not mathematically self-contained. 

A second problem treated by both books arises when equation (1) is 
modified by adding the expression Jo F(s)u(s) ds to the right-hand side of 
equation (1). Here, F(s) is a matrix-valued function and u(t) is a function of 
the random trajectory Y(s), s^t. This produces a coupled system of 
stochastic equations; u(t) corresponds to a control which modifies the 
evolution of the physical process and which, of course, should depend only on 
the previous observations. The first control problem considered is the 
determination of a function u(t) which minimizes a given quadratic form 
involving the trajectory of the physical process and the control function over a 
fixed time interval. As one might expect, a candidate for an optimal control is 
constructed using the solution of the associated filtering problem. However, 
as Balakrishnan mentions in Chapter VII, the optimality of the control over 
the entire class of admissible control function has not been proven. The notes 
by Balakrishnan also discuss a steady state control problem where the 
quadratic form is a time average which is an invariant function of the process 
and its control over each finite time interval. A third control problem is 
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studied where the quadratic form involves only the final value of the physical 
process over a fixed bounded time interval. The solution of this problem is 
applied to a control problem where the physical system X(t) is affected by the 
sum of two controls. The control functions are regarded as the player 
strategies in a two person zero sum game and the stochastic system is 
described as a differential game with imperfect information. 

The book by Arnold may serve as a textbook or reference work. Its 
substantial bibliography contains reference lists for topics such as Markov and 
diffusion processes, stochastic differential equations, stability, filtering, con
trol, and probability theory. There is a good index and each section of the 
book is well organized. The book is especially valuable for nonexperts on 
stochastic differential equations who wish to deal with models for processes 
affected by noise. One can learn the limitations of the theory as well as recent 
results on a variety of problems. The notes of Balakrishnan are valuable to 
anyone who desires to master the mathematical techniques involved in 
modern stochastic control theory. 

VICTOR GOODMAN 

Optimal control theory, by L. D. Berkovitz, Applied Mathematical Sciences, 
12, Springer-Verlag, New York, 1974, ix+304 pp., $9.50 

The term "mathematical theory of optimal control" has come to refer to 
the optimization of a certain class of functional of state and control variables 
for dynamical systems whose evolution with time is described by ordinary 
differential equations. Such problems are similar to the Bolza problem in 
classical calculus of variations, with the important difference that inequality 
constraints may be imposed. A large literature on optimal control theory 
developed during the 1960's, stimulated by the slightly earlier work of 
Bellman, Pontryagin, and their associates. Most of the questions with which 
that literature was concerned have by now been resolved. It is the task of 
authors of books on control theory to preserve the essential aspects, for those 
interested in the applications and as a foundation for students entering an 
area of active current research (e.g. control of systems governed by partial 
differential equations, control systems with time delays, and stochastic 
control). 

In this book Berkovitz gives a readable account not only of the standard 
Pontryagin necessary conditions for a minimum but also of the problem of 
existence. The proof given for the Pontryagin necessary conditions follows 
Gamkrelidze, SI AM J. Control (1965). Like other proofs, it depends on the 
idea of convex set of variations (due to McShane in 1939) and the Brouwer 
fixed point theorem. 

The traditional method in calculus of variations for proving existence of a 
minimum is to show precompactness of minimizing sequences and lower 
semicontinuity. A nicer technique was found in 1959 by Filippov; it avoids 
lower semicontinuity but uses a theorem about measurable selections. This 


