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Despite these shortcomings, this book provides a good introduction to the 
subject matter. The beginner can learn much from it and the expert can use 
it as a reference book. It will have its impact on the future of the field. 
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Before the appearance of Gunning's Lectures on modular forms in 1962— 
if one leaves aside Hardy's 1940 book, Ramanujan, which does not attempt 
to deal with the theory of modular functions systematically, but instead 
treats the subject with the characteristically unusual (though always interest­
ing) perspective of the great Indian mathematician in mind—the only book 
available in the English language in this important area of mathematics was 
Lester Ford's classic, Automorphic functions. First published in 1929 as an 
elaboration of a 1915 Edinburgh Mathematical Tract, Ford's book served the 
mathematical public well for many years. It is hardly a criticism to point out 
the obvious—that by the early 1960's it was long out of date. While Ford 
deals quite effectively with uniformization theory and with the geometry of 
discontinuous groups—in particular he gives a lucid account of the construc­
tion of fundamental regions for discontinuous groups by what has come to 
be known as "Ford's method" of isometric circles—a number of fundamen­
tal developments in the decades following the publication of Ford's book 
created the need for a new exposition of the theory of modular and 
automorphic functions in one complex variable. 

Though small in size and limited in intention, Gunning's book went far 
toward beginning to fill this need. Treating the modular group and certain 
congruence subgroups from the viewpoint of the theory of compact 
Riemann surfaces, Gunning made available to his readers an entire complex 
of ideas too "modern" to appear in Ford's work. Notable examples are the 
application of the Riemann-Roch theorem to calculate the dimension of the 
space of cusp forms, the introduction of the Petersson inner product and 
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consequent proof that every cusp form is a linear combination of Poincaré 
series, and a discussion of the Hecke operators for the case of the full modular 
group. Gunning also applies results in the theory of modular functions to 
theta series and thus to the problem of determining the number of represen­
tations of an integer by a positive definite quadratic form. 

Two years after the appearance of Gunning's book the American 
Mathematical Society published Lehner's more ambitious work, Discontinu­
ous groups and automorphic functions. Broad in scope and detailed in 
approach, Lehner's work has had a considerable impact upon the mathemat­
ical community, as is evident from the large, and still growing, number of 
citations it has received in research articles since it first appeared. As Lehner 
is a student of Rademacher, whose school has studied modular and au­
tomorphic functions primarily from the point of view of their applications to 
number theory, it is no surprise that his book deals at some length with the 
calculation of the Fourier coefficients of automorphic forms by means of the 
circle method, which has its origins in such applications. (The circle method 
is really several different, but related, methods. The original form was 
devised by Hardy and Ramanujan and employed in their famous 1917 study 
of the partition function of number theory, which occurs as the Fourier 
coefficient of the modular form 1/T)(Z).1 The method has since come to be 
known commonly as the Hardy-Littlewood method.) On the other hand, 
Lehner does not disregard the fundamental advances of the Hecke-
Petersson school. Like Gunning he adopts the viewpoint provided by the 
theory of Riemann surfaces, and in particular he makes effective use of the 
inner product on the space of cusp forms (analogous to the inner product of 
abelian differentials on a compact Riemann surface), but he does so in the 
more general context of H-groups, finitely generated Fuchsian groups of the 
first kind with translations, of which the modular group and its congruence 
subgroups are examples. These important special cases receive a good deal 
of attention in Lehner's book, which devotes an entire chapter to the 
modular group, modular functions, and a brief sketch of several number-
theoretic applications. 

The period since the appearance of the books of Gunning and Lehner has 
been marked by a growing interest in modular and automorphic functions 
(even in the classical case of one complex variable), not only on the part of 
followers of Hecke, Rademacher, Siegel, and Selberg, but from a number of 
new directions as well. Not surprisingly, there has been a concomitant 
increase in the numer of books available treating these and closely related 
subjects. Among these are Lehner's A short course in automorphic functions 
(1966), Andrew Ogg's Modular forms and Dirichlet series (1969), the book 
of the present reviewer, Modular functions in analytic number theory 
(1970), and Shimura's 1971 work, Introduction to the arithmetic theory of 
automorphic functions. In addition, J. P. Serre's A course in arithmetic 

1 See G. H. Hardy and S. Ramanujan, Une formule asymptotique pour le nombre des partitions 
de n, Comptes Rendus 2 (1917). 
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(1973) contains a substantial chapter on the theory of modular forms in one 
complex variable. 

To the growing list may now be added Bruno Schoeneberg's Elliptic 
modular functions, published by Springer-Verlag in 1974. As the author 
states in the preface, "the content of the first few chapters belongs almost 
entirely to the repertory of every scholar in the field of elliptic modular 
functions Chapter VII consists essentially of an article by Hecke. 
Chapters VIII and IX are based on the work of the author." Despite the 
large number of recent books, Schoeneberg manages to present a good deal 
of material not to be found in any of them, testimony both to the richness 
and diversity of the field itself and to the importance of Schoeneberg's 
contributions to it over the years. It is indeed in the final Chapters 7-9 that 
the book makes its strongest contributions to the existing body of literature 
in English on modular functions of a single complex variable. Nevertheless, 
even the specialist may find a number of pages of interesting reading in the 
earlier six chapters as well. These are titled, respectively, ' T h e modular 
group," ' T h e modular functions of level one." "Eisenstein series." "Sub­
groups of the modular group," "Function theory for the subgroups of finite 
index in the modular group," and "Fields of modular functions". The final 
three chapters are "Eisenstein series of higher level," "The integrals of 
2^-division values," and "Theta series." 

The modular group T is the collection of all linear fractional transforma­
tions of the form z —» (az + b)/(cz + d)> with a, b, c, d rational integers and 
ad — be = 1. In very broad terms, the subject at hand is the study of the group 
T together with certain of its subgroups of finite index (the congruence 
subgroups) and the meromorphic invariants of such groups (the modular 
functions and forms). The first chapter begins with a discussion of general 
(complex) linear fractional transformations, quickly focuses upon the real 
linear fractional transformations, and then specializes to the modular group 
itself. Schoeneberg is careful to maintain the sometimes forgotten distinction 
between homogeneous and inhomogeneous linear fractional transforma­
tions, a minor point, but one whose neglect can lead to irritating difficulties 
in calculation.2 

An important feature of Chapter 1 is the introduction of the notion of a 
fundamental region and the construction of a fundamental region for T. The 
uninitiated reader should be alerted that, while fundamental regions are 
indeed "fundamental," much of the literature on discontinuous groups does 
not require that they be regions. Usually the requirement of connectedness 
is omitted and frequently a fundamental region need not even be open. It is 
also the case that none of the various definitions to be found in the literature 
is restrictive enough to attach a unique fundamental region to a given 
discontinuous group. Indeed there are several ways in which uniqueness can 
fail with each of the definitions, and Schoeneberg's definition is no excep­
tion. However, since Schoeneberg—in contrast to Lehner, for example— 
deals only with subgroups of finite index in T, rather than with general 

2 In this review only the more commonly used inhomogeneous definitions are given. 
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discontinuous groups, he need not dwell on problems of definition. Happily, 
the author takes full advantage of this state of affairs, stating the definition 
with a minimum of fuss and immediately thereafter constructing the "stand­
ard" fundamental region for T, the open subset of W (the upper half-plane) 
defined by the inequalities |Rez |<§ and | z | > l , together with half of its 
boundary points. 

The same sensible approach is to be found in the treatment in Chapter 4 
of fundamental regions for subgroups of finite index in T. In their construc­
tion Schoeneberg proves and applies the standard result that if I \ is such a 
subgroup with coset decomposition r = ( J ^ = i r i S v and S* is a fundamental 
region for T, then 3^= |Jv=i Sv(&) is a fundamental region for I \ . Taking 9* 
to be a "nice" set, one gets a "nice" fundamental region for I\ In this result 
T can be replaced by any discontinuous group acting on $£, but the author 
has no need for this generality. Indeed, in Chapter 4 he is concerned 
primarily with T(N), the principal congruence subgroup (of T) of level N, 
defined for N a positive integer to be the subgroup of those transformations 
z->(az+b)/(cz+d) in T satisfying the condition a=d=±\, b = c = 0 
(mod N). (With this notation, T( l )=r . ) A congruence subgroup of level N is 
any subgroup of T which contains T(N). (Note that the level is not unique, 
but it is of interest to determine the least level of a given subgroup Ti, what 
the author calls the conductor of I\.) Schoeneberg applies the above result 
to construct explicitly fundamental regions for T(2) and indeed for all the 
congruence subgroups of level 2. He does the same for the congruence 
subgroup r°(q), of level q, with q a prime number, where T°(q) is defined by 
the restriction b = 0 (mod q) in the linear fractional transformation z —> 
(az+b)/(cz+d). (There are some pleasing pictures here illustrating the 
fundamental regions constructed.) 

The next order of business in Chapter 4 is a consideration of the parabolic 
cusps of 3*l9 those real points (necessarily rational) on the boundary of 9Y 
Schoeneberg gives a formula for the number of inequivalent cusps of T(N), 
and he obtains the familiar result that r°(q), with q a prime, has exactly two 
cusps. Defining 2£* to be 3if with the rational points (including i<*>) of the real 
axis adjoined, the author next gives a rather brief, but careful discussion of 
the compact Riemann surface W^/Ti, whose points are orbits of 2£* under 
the group I \ , a subgroup of finite index in I \ In order to discuss the genus of 
3€*/Ti Schoeneberg quotes, without proof, Euler's theorem on polyhedra as 
well as the connection between the Euler characteristic v—e+f and the 
genus of the surface. He closes the chapter with a number of interesting and 
useful calculations relating to the genus of 3£*/ri—usually called simply the 
genus of Ti—for certain congruence subgroups Ti of T. In particular he 
derives a formula for the genus of T0(N), a congruence subgroup of level N 
defined by the condition c = 0 (mod N). These groups are important in 
number-theoretic applications of the theory of modular forms, among other 
reasons, because of their connection with theta series. 

Chapter 2 begins the main business of the work, the theory of modular 
functions and forms. A modular function is a function ƒ meromorphic in Vt 
which is invariant under some subgroup I \ of finite index in T; that is to say, 
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ƒ ° M=f for all M G IY For Schoeneberg a modular form is a function F 
meromorphic in 26 satisfying the functional equation (cT+d)kF(MT)=F(r), 
for all M=(cd) e I \ , with k a fixed integer known as the dimension of the 
form.3 (Thus a modular function is a modular form of dimension 0.) Though 
the author in fact has occasion—in Chapter 9—to discuss modular forms of 
half-integral dimensions with multiplier systems, he avoids the complications 
involved in giving the definition. 

The characteristic functional equation of a modular form F implies the 
existence of a Laurent expansion in the appropriate local uniformizing 
variable at each parabolic cusp, if it is assumed that F has only finitely many 
poles in the closure of ^ i . (At i°° the local variable is of the form t = e

l7TizlN, 
with N a positive integer, and at the finite cusps it is similarly an exponen­
tial; hence these Laurent expansions are often called Fourier expansions.) 
There is a further condition imposed upon a modular function or modular 
form: that the Laurent expansion be finite to the left at each parabolic cusp. 
If a modular form is analytic in 26 and the expansions contain no negative 
powers it is called an entire form ; if the expansions of an entire form contain 
only positive powers it is called a cusp form, Schoeneberg does not em­
phasize the role of the functional equation in the question of the existence of 
the Laurent expansion and thus, in my view, fails to motivate the discussion 
sufficiently. 

Chapter 2 deals only with modular functions and forms of level one, 
that is, with the case in which Ti is the full modular group I\ The author 
constructs the well-known absolute modular invariant J(r) by use of the 
Riemann mapping theorem and the Schwarz reflection principle, and then 
proves the result that contains the theoretical significance of J ( T ) : The field 
of modular functions is the rational function field C(J), with C the field of 
complex numbers. Using the fact that J'(T) is a modular form of dimension 
- 2 , Schoeneberg then constructs all entire modular forms of level one. 
Singled out for special attention, as indeed they should be, are A(T), the 
discriminant function of elliptic function theory (a modular form of dimen­
sion —12), and those modular forms which turn out to be constructible as 
Eisenstein series (Chapter 3). The chapter closes with a calculation of the 
complex dimension of the vector space C+(I\ - k ) of entire modular forms 
(level one) of fixed integral dimension -k (C+(I\ -k) is trivial for k odd or 
k<0) and with a proof that two modular forms, of dimensions —4 and - 6 , 
suffice to generate the full graded ring of entire modular forms of negative 
even integral dimensions. 

Chapter 3 continues the discussion of modular forms of level one, but 
here the construction of entire forms is effected through the use of Eisen­
stein series, functions of the form Gk(r)=^ {mr + n)~k, with k an even integer 
^ 4 , the summation being over all pairs of integers except (0,0). For k ^ 4 
uniform convergence of £ |mr+n|~k on compact subsets of 26 is assured and 

3 With regard to the term for k the literature is in a chaotic state. The terms "degree" and 
"weight" are also employed, sometimes with the same meaning as "dimension," sometimes 
with a related, but different, meaning. 
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from this it follows without difficulty that Gk(r) is an entire modular form of 
level one and dimension — k. The discriminant function A(T) and the 
absolute modular invariant J(r) are constructed once again, this time in 
terms of Gl and Gl. Indeed, the graded ring of entire modular forms of 
negative even integral dimensions is generated by G4 and G6. However, the 
real interest in the Eisenstein series resides largely in the number-theoretic 
significance of their coefficients in the power-series (Fourier) expansion at 
the parabolic cusp i<*>. In fact, if we write Gk(r) = a0+Z«=i ane

2mnr, then a0 is 
2£(k), with f the Riemann zeta-function, and an, n > l , is essentially 
ork-i(n)=Xd|ndk"1. The polynomial relations among the Eisenstein series— 
many of which follow immediately from a knowledge of the dimension of 
C+(r, —k)—lead directly to a number of interesting number-theoretic re­
sults, of which the following one derived by Schoeneberg is typical: 

n - l 

o-7(n) = a3(n) +120 X or3(k)cr3(n-k). 
k = l 

The explicit calculation of the coefficients of Gk is usually accomplished 
by application of the Lipschitz summation formula, itself a consequence of 
the Poisson summation formula. Though Schoeneberg follows this general 
procedure, even mentioning Poisson by name, he unfortunately states 
neither summation formula explicitly. He presents Hecke's important 
method for dealing with G2—in which case absolute convergence fails—by 
applying the same summation techniques. There are no nontrivial elements 
of C + ( r , - 2 ) ; nevertheless, by interpreting the defining sum appropriately 
Hecke proved that G2 has the transformation properties of a modular form 
of dimension - 2 . It fails to be a modular form, however, because it is not 
meromorphic in 2£; indeed it has an expansion of the form 
G2(T)=Xn=i One27rmT-7r/y, with y = I m r . From this it follows that 
G2(T) = G2(T)+7r/y is analytic in 2£, but does not fulfill the transformation 
requirements of a modular form, instead satisfying the following, closely 
related, transformation law: 

(cT + dr2G?(MT) = G?(T) + pM(T), M = (cd) G T, 

with PM(T) a rational function in T. The Hecke method is pursued further in 
Chapter 7. 

Chapter 5 generalizes the ideas of Chapter 2 to subgroups of arbitrary 
level in T, bringing the viewpoint of Riemann surface theory—which of 
necessity makes its presence felt, at least indirectly, in any discussion of 
modular functions—very much into the foreground. After the introduction 
of differentials and divisors on a Riemann surface, the Riemann-Roch 
theorem is stated, without proof, and applied to calculate the dimension of 
C+(I \ , — k), with k an even integer ^ 2 and I \ an arbitrary subgroup of finite 
index in T. Since the Riemann-Roch theorem remains unproved here (with 
good reason—a proof would have taken Schoeneberg far afield), I would 
have liked the dimension calculated by elementary means for a few congru­
ence subgroups of low level, for which it is known that, suitably modified, 
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the procedure the author employs for the full group T can be carried 
through. Further sins of omission are the author's failure to give a proof of 
the basic Theorem 4 of Chapter 5 (a nonconstant modular function takes on 
each complex value the same finite number of times in a fundamental region 
9*1 of Ti), or to state the important corollary result that a bounded modular 
function is constant. While the author's assertion that the proof of Theorem 
4 is similar to that given earlier for the special case Ti=r is true enough, 
there remain sufficiently many differences of detail, especially in the han­
dling of the finite parabolic cusps, to warrant a complete proof. In fairness it 
should be pointed out, however, that this is one of the book's very few 
lapses in application of the sound pedagogical principle that repetition of 
ideas is beneficial to the reader's understanding, especially when the context 
is varied. Furthermore, Schoeneberg atones by giving an elegant proof— 
making clever use of A(T)—that there are no nontrivial entire modular forms 
of positive dimension, and of the related formula for the number of zeros of 
an entire modular form of negative dimension. 

Chapter 7, a natural continuation of Chapters 3 and 5, introduces the 
Eisenstein series GN,k,a of arbitrary level N ^ l and dimension - k ^ - 3 . 
Defined by the series X(miT+m2)~~k, with summation conditions nu^at 
(mod N) (and thus obtainable as the Nth order division values of the 
derivatives of the Weierstrass ^-function), the GN,k,a, a = (ai, a2), are entire 
modular forms of dimension - k for the group T(N). With respect to the 
structure of C+(r(N),-k), their importance resides in the fact that an 
arbitrary entire form can be written as a linear combination of Eisenstein 
series and a cusp form. At this point one could wish that the Petersson inner 
product had been introduced somewhere in the book. If it had been, it could 
be proved that the Eisenstein series span the orthogonal complement, within 
C+(r(N), -k ) , of the subspace of cusp forms. Of course, it is hardly to be 
expected that the 1927 article of Hecke which provides the material of this 
chapter would mention an inner product first introduced by Petersson in 
1939. In this respect, at least, Schoeneberg follows Hecke too faithfully. 

From the viewpoint of the specialist, the most interesting and significant 
portion of Chapter 7 is that which presents Hecke's analogue of the 
Eisenstein series of level N for the dimensions - 1 and - 2 . Here 
Schoeneberg integrates work of Hecke appearing in several different arti­
cles, and he does so with care, tastefully supplying details omitted in the 
original. As in the case of the full modular group T, the Eisenstein series of 
dimension - 2 fail to be modular forms with respect to T(N), since they are 
not analytic in X However, in contrast to the situation for the full group, 
when N ^ 2 there are several linearly independent Eisenstein series of 
dimension - 2 , each with the same nonanalytic term; as a result, modular 
forms of dimension —2 can be constructed as the difference of two Eisen­
stein series. The situation for dimension —1 is different, as the nonanalytic 
term does not appear and thus the Eisenstein series in this case are 
themselves modular forms with respect to T(N). 

Despite the passage of almost a half-century since the work of Hecke on 
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Eisenstein series of dimensions - 1 and - 2 , the theory of automorphic forms 
of dimensions k, with — 2 ^ k ^ 0 , has remained largely undeveloped. Except 
for the integral and half-integral dimensions between - 2 and 0, the only 
methods of constructing automorphic (or even modular) forms of dimen­
sions in this range have been ad hoc methods which afford little insight into 
the nature of the Fourier coefficients or the structure of the vector spaces of 
entire forms. (In the case of the full modular group, for example, one can 
take arbitrary real powers of A(T), the discriminant function, since A(T) has 
no zeros in Sif.) For the case k = —2, Petersson has fully developed the 
theory of cusp forms on a congruence subgroup of T by generalizing to 
Poincaré series Hecke's method of summing Eisenstein series of dimension 
- 2 . In addition, entire forms of dimensions —\ and —I can be constructed 
through the use of the ta series, but only for certain congruence subgroups of 
T. Recent work of D. Niebur, on the other hand, gives some insight into the 
nature of the automorphic forms of dimension 0 (automorphic functions) 
connected with an arbitrary H-group.4 

As G. Bol observed in 1948, and as can be proved easily by application of 
the chain rule, 

D(r+1){(cr + d)Tf (Mr)} = (cr + d)—2 f + 1 ) (Mr) , 

provided r is a nonnegative integer, MT = (aT+b)/(cT+d), with ad-bc = l, 
and the derivatives exist. Consequently, the (r+l)st derivative of a modular 
form of dimension r is a modular form of dimension —r—2 and, conversely, 
the (r+l)-fold integral of a modular form of dimension - r - 2 is a "modular 
form of dimension r with period polynomials" (or Eichler integral). This 
latter concept is a natural generalization of the notion of an abelian integral 
on the Riemann surface 2£*/r, which is the special case r=0 . In Chapter 5 
Schoeneberg takes up this line of thought, but regrettably (in view of recent 
research activity centered upon Eichler integrals and the related Eichler 
cohomology groups) he does so only for the case r=0 . He returns to the 
subject in a more serious way in Chapter 8, which is devoted to the 
calculation of the periods connected with the integrals of Eisenstein series of 
level N and dimension - 2 . Here Schoeneberg begins by replacing the 
Eisenstein series by the linearly equivalent system of Nth order division 
values of the Weierstrass ^-function. This approach has the advantage that 
the latter—with one exception—are analytic in ^i and thus modular forms of 
dimension - 2 . The exceptional function is in fact G 2 ( T ) , the nonanalytic 
Eisenstein series of level 1 discussed in Chapter 3. There Schoeneberg 
obtains a new construction of A(T) (the third one in the book) by integrating 
the modified Eisenstein series G?(T) = G2(T) + 7r/y and exponentiating the 
result. This leads to the well-known Dedekind function T)(T), in fact a 
modular form of dimension —§, but not identified as such by the author, 
since he has restricted himself to modular forms of integral dimensions, 
without multipliers. (This restriction is cause for further annoyance in 
Chapters 8 and 9.) However, he does display the functional equation of 

4 Niebur has now extended his work to include all dimensions k in the range - 2 ^ k ^ 0. 
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TJ(T), from which it follows that A(T) = TJ24(T) is a modular form of dimension 
— 12. Schoeneberg's multifaceted treatment of the important function A(T) 
is, incidentally, but one example of this ability to illuminate a complex 
subject from several points of view, with great potential benefits to the 
careful reader. This, in my view, is one of the book's principal strengths. 

The bulk of Chapter 8 is devoted to the calculation of the periods arising 
from the integrals of the ^-division values. Since the transformations 
U z = z + 1 and Tz=—1/z generate the full modular group T and the period 
connected with U can be read off from the definition, the essential work is 
contained in calculating the periods of the integrals under the transforma­
tion T. Schoeneberg accomplishes this by two different methods, both of 
which have their roots in techniques developed to derive the functional 
equation relating TJ(TT) to TJ(T). The first of these is the classical method of 
Riemann and Dedekind, the second the relatively recent (1954) approach of 
C. L. Siegel, which is a subtle and clever application of the residue theorem. 
Exponentiating the abelian integrals under discussion, Schoeneberg obtains 
natural generalizations of T)(T) which are modular forms of dimension 0 and 
level N, with multipliers. These functions raised to the power 12N2/(6, N) 
are modular functions invariant under T(N). 

The final Chapter 9, based upon an important 1939 article of the author, 
deals with theta series attached to positive definite quadratic forms in an 
even number of variables. (The author avoids the case of an odd number of 
variables since that would lead to modular forms of half-integral dimen­
sions.) Schoeneberg derives the transformation formula for his theta series 
under T, and hence for an arbitrary element of T, the formula for U being 
virtually self-evident. There is an important simplification for elements of 
r0(N), with the level N determined by arithmetic properties of the matrix A 
associated with the quadratic form. (In fact, N is the least positive integer 
such that N • A""1 has integral entries, with even integers on the main 
diagonal.) For elements of the principal congruence subgroup T(N) there is 
a further simplification; indeed the theta series are entire modular forms 
with respect to T(N), a fact which is the principal result of Chapter 9. The 
proof, as could be anticipated, involves the evaluation of Gaussian sums 
with prime argument in terms of the Legendre symbol. This is achieved here 
as a corollary to the general theta transformation formula under T, derived 
by Poisson summation. 

The chapter closes with an illustration of the general theory through 
several examples of level N = l , theta series that are modular forms with 
respect to the full modular group T. The special cases presented involve 
quadratic forms in 8,16 and 24 variables, giving rise to theta series which 
are modular forms of dimensions - 4 , - 8 , and - 1 2 , respectively. In each 
case the nth Fourier coefficient of the theta series (the number of representa­
tions of n by the quadratic form in question) is represented as a divisor 
function—arising as the nth coefficient of an Eisenstein series of the approp­
riate dimension—plus the nth coefficient of a cusp form on T. At this (rather 
late) point Schoeneberg presents the classical Hecke estimate for the growth 
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of the coefficients of a cusp form and he applies it to show that the divisor 
function is a reasonably good approximation to the number of representa­
tions of n by the quadratic form. Because of the restriction to N = l 
Schoeneberg does not discuss the classical theta function, 
#(T)=X-°O exp(7rim2r), which is of level N = 2 . # S (T ) arises from the quadra­
tic form x\+ - - • +Xs and thus serves as a generating function for rs(n), the 
number of representations of n as a sum of s squares. The author's omission 
of # ( T ) is unfortunate in a book of this size and scope, especially since he 
has developed all the machinery necessary to discuss # S ( T ) , at least for s = 0 
(mod 8), in which case # s(r) is a modular form of level 2 and dimension 
—s/2, without multipliers. 

Undoubtedly there will be some who view Schoeneberg's book as old-
fashioned. Indeed, except for Chapter 8, the book could have been written 
in 1939, and even the 1967 article of the author, upon which Chapter 8 is 
based, conceivably could have been written in 1940. My own feeling is that 
we should be grateful for works of this quality whenever they appear. On 
the other hand, I regard as a flaw Schoeneberg's failure to introduce Hecke 
operators or the Petersson inner product. Were the book not otherwise 
excellent, these omissions, in themselves, would be no cause for concern. As 
things are, the first six chapters constitute a well-written, solid treatment of 
the classical theory of modular functions of a single variable, except for the 
omission of these two important topics. These chapters, together with 
appropriately chosen additional material, could serve as an excellent year­
long introduction to the subject for graduate students with a reasonable 
background in analysis and algebra. It is a pity that additional material must 
be introduced for this purpose. The book is good enough that I cannot help 
feeling it could have been even better, and wishing it were. 

The translation, by J. R. Smart and E. A. Schwandt, is generally smooth 
and free of awkward phrasings. Happily, it reads like English, with little, if 
any, trace of the original German detectable. I noticed several misprints, but 
a remarkably small number for a book of this length. 

MARVIN I. KNOPP 
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