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treatment of the concept of validity and of the completeness theorem for the 
first order logics extending the propositional logics considered in the book 
through a generalization of the famous algebraic proof of Rasiowa and 
Sikorski of the completeness theorem of classical first order logic and of the 
subsequent concept derived from that proof of the canonical realization of an 
elementary theory. The supplement does not touch upon the theory of 
cylindric and polyadic algebras nor does it tackle with algebraic means any 
part of model theory. 

An excellent article by the same author summing up much of the material 
of the book and developing further the first order theory of multi-valued logic 
has appeared in Studies in algebraic logic referred to above. 

AUBERT DAIGNEAULT 
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On measures of information and their characterizations, by J. Aczél and Z. 
Daróczy, Mathematics in Science and Engineering, vol. 115, Academic 
Press, New York, San Francisco, London, 1975, xii 4- 234 pp., $24.50. 

The purpose of the authors cannot be stated more clearly than in the 
following lines of the preface (p. XI): 

"We shall deal with measures of information (the most important ones 
being called entropies), their properties, and, reciprocally, with questions 
concerning which of these properties determine known measures of informa
tion, and which are the most general formulas satisfying reasonable require
ments on practical measures of information. To the best of our knowledge, this 
is the first book investigating this subject in depth". In fact, from the 234 pages 
of the book, only 6 are devoted to simple applications to logical games (pp. 33 
-38) and 17 to optimal coding (pp. 42-50 and pp. 156-164). 

But, as the authors write (p. 29) "the problem is to determine which 
properties to consider as natural and/or essential". From the beginning they 
make a choice, which implies consequences of paramount importance: the 
measure of the information yielded by one event A depends only upon the 
probability P(A) of this event; due to this choice they restrict themselves to the 
foundations of the classical information theory, initiated in 1948 by Claude 
Shannon and Norbert Wiener. Of course this classical theory has proved to be 
very useful indeed in many branches of science, its greatest success being the 
foundation and development of communication theory: the fundamental 
hypothesis means that the amount of information given by a message depends 
only on its frequency; very unexpected messages give considerable informa
tion. But, as has been often pointed, no account of the semantic content of the 
message, could be taken in this way. Moreover there is a subjective aspect of 
information, which is entirely out of the scope of the classical theory: the same 
event does not yield the same amount of information to all the observers. 

These rather obvious remarks show that the classical information theory 
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deals only with one very important, but particular, aspect of information. 
Nevertheless the authors do not discuss the limitations of the theory based 

on the restrictive postulate: information = function of probability; they 
content themselves with a reference (p. XI) to a list of publications whose 
purpose is the generalization of information theory, taking account of the 
aspects neglected by the classical Shannon-Wiener theory. 

From a much less important point of view, a restriction is made (p. 5), 
restraining the set of events to which the theory applies: throughout the book 
it is supposed that the probability algebra S of events A is nonatomic; this 
implies P(S) = [0,1]; due to this, the functional equations, basic to the theory, 
are always defined on simple domains: intervals, triangles, squares, etc . . . 

The Introduction (Chapter 0) starts with an investigation of the measure 
H(P) of the information yielded by a single stochastic event A, with the 
probability P(A) = p. 

N. Wiener has been the first to attract attention to H(p), a notion which has 
always appeared to me as the most fundamental in the theory; considering 
(Cybernetics, p. 75) the choice at random of a point x on [0, 1] with a uniform 
probability, he gives — log2 (b — a) as "the amount of information we have 
from the a posteriori knowledge" that x E [a, b]. The authors, following A. 
Rényi, call H(p) "the entropy of the event A"; I am afraid that this could 
conceal the fundamental distinction between two different situations, clearly 
pointed by N. Wiener: a posteriori, when the event A has been realized, the 
amount of information is measured by H(p); but a priori, before making an 
experiment in which the event A could be realized or not, the only measure at 
our disposal is the expectation of this amount of information, i.e. S(p) 
= pH(p) + (1 - p)H{\ - p); thus the name "entropy" being currently used, 
since Shannon, for S(p), is it very proper to use it, at the same time, for H(p)l 
It must be pointed, that for the authors, except in the Introduction, Measure 
of information is always taken from the a priori point of view, as the 
expectation of H(p) and never as the amount of information yielded a 
posteriori by the realization of the event A. 

From the 3 conditions, which "seem intuitively rather natural": 
(a) nonnegativity: H(p) > 0, Vp e]0,1]; 
(b) additivity for independent events: H{pq) = H(p) + H(q); 
(c) normalization: #(1/2) = 1, one deduces: 

H(p) = -log2/>. 

Of course, the proof is based on the uniqueness of the nonnegative (or, what 
is the same, nondecreasing) solution: f(x) = ex, c > 0, of the Cauchy func
tional equation: f(x + y) = f(x) + f(y) on the interval ]0,+oo]. The two 
following sections (0.3) and (0.4) give several useful theorems on the solutions 
of the Cauchy functional equation and on completely additive number 
theoretical functions, i.e. functions satisfying (p(mri) = (p(m) + q>(n) for all 
positive integers m and n. I should like to say that the lecture of these 20 pages 
will be a delight at the same time for the layman, who will appreciate the 
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clarity, and for the specialist, who will note the fine improvements to several 
proofs. 

Chapter I makes, in great details, a review of several properties of Shannon's 
entropy Hn (ph . . . , pn) (1948), extended to "incomplete" experiments 
(P\ + • • • + Pn < O by Rényi (1960): 

Hn:àn^R+ 
where 

AW = ( U , . . . , ^ ) : 0 < 2 ^ < 1), 

and 

L(x) = —x log x, x E]0,1], 

= 0, x = 0. 

The verification is straightforward, the properties being classified in: 
(a) algebraic properties, e.g. additivity 

= Hm(pu... 9pm) + Hn{qv.. .,qn); 

(b) analytic properties: e.g. 

Hn(P\>-->Pn) < l o § " 

based on the fact that L(x) is a differentiable concave function. 
Chapter II is a first approach to the characterization of Shannon's informa

tion; it starts with a long list (61 lines!) of definitions, i.e. the giving of names 
to 26 relations verified by a sequence of functions In\ An -> R; e.g. the In are 
said to be «0-expansible if: 

4 o ^ i ' • • • >Pn0) = V i ( 0 ' ^ i ' • * • 'Ao) 

= AO+ICA» • • • >Pk>Q>Pk+i>- • • ^/io^ 

/: = 1, 2, . . . , / I Q - 1, 

for all ( ^ , . . . ,pn ) e A„ . The 26 properties considered are of course not 
independent; many of their correlations are given in propositions like (2.3.4): 
If In is 3-recursive and 3-symmetric it is also 2-symmetric and decisive. 

In the last section are given connexions with the axiomatic characterization 
of Hincin (Khinchine) (1953) and Faddeev (1956); and a result somewhat 
stronger than that of Faddeev is proved. 

The original contribution of the authors to the axiomatization of informa-
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tion theory is the subject matter of Chapter 3; given a probability space 
( ! ,§ ,? ) to every random event A E § is associated a real number 1(A), the 
"information contained in A", which depends only upon its probability 
P(A): 1(A) = f[P(A)]; now given an event B G S, to every events G S D B 
the authors define "the relative information of the event A with respect to 2?", 
by: I(A/B) = P(B)f(P(A)/P(B)) if P(B) > 0 and = 0 if P(B) = 0; the 
"information contained in A, B" is defined by: 

I(A, B) = 1(A) + I(B/Â) (Â = X - ^ ) . 

Putting P ^ ) = x, P(B) = y, the symmetry axiom for 7(̂ 4, 5) implies the 
"fundamental equation of information" 

f(x) + (l - x) / ( 7 / ( i - *)) = ƒ(^) + (l - ƒ)ƒ(*/(i - y)) 

(first introduced by Tverberg, 1958). An "information function" is any solution 
of this equation satisfying ƒ (1/2) = l,/(0) = f (I); the Shannon's entropy 
S(x) = L(x) + L(\ — x) is obviously an "information function"; but it is not 
unique: the same is true from all f(x) = xh(x) 4- (1 - x)h(x) where h satisfies 
h(xy) = h(x) + h(y); S(x) is characterized by some regularity properties, 
which seem desirable; in 30 pages the authors make an excellent review (as 
could be expected from such experts on functional equations) of the most 
useful properties (continuity, nonnegativity, boundedness, • • • )> *he culminat
ing point being a beautiful proof of Lee's theorem: measurability of f(x) is 
necessary and sufficient. 

Chapter IV is devoted to further characterizations of Shannon's entropy: 
branching property, sum property, inequality, subadditivity. 

To give one example: a sequence of functions In(p\,... ,pn) is said to have 
the sum property if: 

In(pv...,Pn) = ^g(pk\ g:[<U]->*. 

The strongest result, due to Daroczy (1971) reads: 
The sequence In having the sum property with a function g measurable and 

g(0) = 0, then In(pv . . . ,pn) = Hn(pv... 9pn) (Shannon's entropy) n = 1, 
2, . . . iff In is additive and normalized. 

The set of properties under scrutiny seems to me really exhaustive. 
In Chapter V entropies are considered as mean values; the main results read 

as follows: cp being strictly monotonie and <p* : [0,1] -> R, defined by q>*(t) 
= t<p(t), t G]0,1], <p*(0) = 0, the average entropy 

/„(A,..., jPJ = -log(p-1[|(p*(A)] 

is additive iff: <p = log t or 9 = ta~x (a > 0,a ^ 1), i.e. iff In is the Shan
non's or the Rényi's entropy. 

The introduction of Rényi's entropy leads to a generalization of information 
functions in Chapter VI: in the fundamental information equation the factors 
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(1 - x) and (1 - y) are replaced by (1 - xf and (1 - y)a (a ¥* 1): the limit 
of the generalized information function when a tends to 1 is the Shannon's 
information function. 

In Chapter VII further generalizations of Rényi's entropy are introduced 
containing two parameters a, /?: if /? = 1 they reduce to Rényi's entropy. 

The book of J. Aczél and Z. Daróczy represents the summing-up of a long 
series of fruitful researches: one has the impression that they have so 
thoroughly explored the field, that there is little chance for the discovery of 
really new properties of Shannon's entropy and eventually Rényi's entropy; 
perhaps this outstanding achievement, discouraging further efforts on the 
same line, will now stimulate explorations of neighbouring fields, taking 
account of all the aspects of information out of the scope of the classical 
theory. 

J. KAMPÉ DE FÉRIET 
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Differentiation of integrals in Rn, by Miguel de Guzman, Lecture Notes in 
Mathematics, no. 481, Springer-Verlag, Berlin, Heidelberg, New York, 
1975, xi + 225 pp., $9.50. 
Professor de Guzman's book concerns itself with material which has come, 

in recent years, to play a fundamental role in the theories of real and complex 
analysis, Fourier analysis, and partial differential equations. Maximal func
tions, covering lemmas and differentiation of integrals seem to be at the core 
of the modern theory of singular integrals, Littlewood-Paley theory, and Hp 

spaces, as well as many other areas of great interest. 
The starting point of the theory is the consideration of the following simple 

result: 
Given ƒ G Ll(Rn), we have 

1 C 
lim 7^7 rr j , x f(y) dy = ƒ (x) 
r->0 \B(x; r)\ JB(x;r)J V ^ W J V 7 

for a.e. x E Rn. (Here B(x; r) is the ball centered at x of radius r, and | B(x; r)\ 
is its Lebesgue measure.) This result, known as Lebesgue's theorem on the 
differentiation of the integral, is, however, just the beginning of the theory. 
For, in order to give their proof of this result, Hardy and Littlewood 
introduced the maximal operator, M, given by 

M(f)(x) = sup T - ^ - V T ƒ \f(y)\dy, ƒ G L?(Rn\ 1 < p < oo. 
r>0 \Byx\r)\JB{x\r) 

This maximal operator, which is of fundamental importance in many areas, 
turns out to be bounded on Lp(Rn) when/? > 1, and majorizes some of the 
most important operators in Fourier analysis. For example, the process of 
taking Cesàro means of Fourier series or Poisson integrals of functions can be 
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