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unconventional instead of accepted terms. Without giving a lengthy list of 
examples, the author defines the waiting time of a customer as including the 
service time of that customer, contrary to accepted practice. The erlang unit is 
mentioned without a definition and an elementary abelian argument is labeled 
tauberian. 

The shortcomings of this book are not merely stylistic. The proofs of several 
theorems are inadequate. In discussing the classical result that the output 
process of an M/M/X queue is Poisson, the author shows only that the times 
between three successive departures are independent and negative exponen
tially distributed. This is not only insufficient, but the author's subsequent 
statement that the theorem is not valid for more general systems, is incorrect. 
P. J. Burke's theorem was indeed proved for the M/M/s queue. 

When there is a choice of several classical arguments the author has a 
propensity for selecting the least informative approach as in his presentation 
of the M/G/l model. A number of formulas are poorly aligned and a lengthy 
proof ends in mid-sentence on p. 135. Apart from all other considerations, the 
book would have benefited from greater editorial care. 

In summary, except as an accessible reference to the author's own research, 
this book cannot be recommended as reading material on the classical 
queueing models. This is unfortunate. There is a definite need for clear and 
unified expositions of the theory of queues, which provide a broad synthesis 
of an interesting but overly ramified field. 

MARCEL F. NEUTS 
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 83, Number 3, May 1977 

Optimization theory, the finite dimensional case, by Magnus R. Hestenes, John 
Wiley and Sons, New York, London, Sydney, Toronto, 1975, xiii + 447 
pp., $24.95. 

The central problem of nonlinear programming, which is one of the four or 
five main areas within mathematical programming, can be stated as follows: 

infimize fo(*) 
n>\ subject to fj(x) < 0, i = 1, •. . , r, 

g{(x) = 0, i = 1, . . . , s, 
x E S. 

In (P), the functions fi9 g( map S C Rn to R, x = (jclf . . . , x „ ) 6 i î " , and 
typically S = Rn or S is a compact, or convex, or an open subset of Rn. 

When r = 0, i.e., when all constraints in (P) are equalities, and suitable 
differentiability conditions are imposed, (P) becomes the calculus optimiza
tion problem that is a standard topic of most two-semester calculus 
sequences. Indeed, much of the work in nonlinear programming, which is not 
aimed at obtaining specific algorithms, is a continuation of classical investiga
tions. 

1. A concept of abstract duality. A new "twist" on (P) is provided by the 
fairly recent generalized dual problems, which can be abstractly formulated 
as follows, with S ¥* 0 an arbitrary set. 
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A class of functions 2 *£ 0 is specified, and the domain of each function 
a E 2 is to contain the image set 

(1) IM = \(vx,...9vr,ul9...tuM)eRr+'\ 

Each a E 2 maps into R, is required to have o(0, . . . , 0) > 0 and to be 
monotone nonincreasing (m.n.i.) in each vi9 i.e., 

x>\ > Ü, and • • • and v'r > vF implies 

o(v\,. . . , v'r9 u{9. . . , us) < a(ü„ . . . , v„ w„ . . . , us). 

for some x E 5, 
ƒ,(*) < i>„/ = 1,. 
&(x) » ui9 i = 1,. 

. , r ; 
. . ,^ 

(2) 

Then the dual problem is taken to be that of determining 

(D) v(D) = max inf L(x9 a) 

where the "generalized Langrangian" is defined by 

(3) L(x, a) = f0(x) - o(fx (x), . . . ,f,(x), gx(x)9 . . . , &(x)). 

For some dual problems, "max" is replaced by "sup" in (D). 
What is sought for in dual problems (D) is equality of value with (P), i.e., if 

(P) is consistent and has finite value t>(P), one wants the duality equality to 
hold: 

(DE) „(P) = „(D). 

One always is assured of one direction, namely 

(4) o(P) > v(D) 

by simply noting that, for any a E 2, assuming (P) consistent we have 

inf L(x9 o) < inf \ L(x9 o) 
x £ 5and/(jc) < 0, i = 1 , . . . , r; 

gi(x) = 0, i = I,. . . ,s 

(5) 
inf /o(x) 

x E 5 and/(x) < 0, i = 1 , . . . , r; 

gi(x) = 0,i=\,...,s 

= o(P). 

The kind of dual problem (D), that we consider here, differs from its primal 
(P) in that its infimization is free of any functional constraints. Note, 
however, that the variables in (D) overlap with those of (P), and that (D) is a 
mixed ("max inf") problem rather than a pure ("max") problem. Neverthe
less, for (P) a linear program, this dual (D) is the usual one (see §3 below). 

Results regarding the dual program (D) all depend on some analysis of the 
value function, also called the perturbation function: 

\x E S and ƒ (x) < vi9 

(6) va l (ü j , . . . , vr9 ul9..., us) * inf 
gt(x) * ui9 i - U . . . >s 

If (v{9..., 1?,, t<!, . , . , si,) £ IM, the value function is defined to be + oo for 
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this argument. If val(ü°, . . . , v% w? , . . . , uf) = — oo for any (v®9..., v®, 
« ? , . . . , wf) G IM, clearly (DE) is impossible for v(P) finite, regardless of 
how the family 2 is chosen, since then for any a G 2 we have 

inf L(x,o) < 'mÜLlx, o) 
X 6 S 

lx G S and ft (x) < v?> i =* 1 , . . . , r; 

I &(*) = wf, / = 1 , . . . , s 

(7) < - cF (^ . . . , o r
0 , «? , . . . , i i , 0 ) 

|JC G S and^-(x) < i?f, / = 1 , . . . , r 

= - o o . 

In all further discussion in §1, we use the blanket assumption that val( —, — ) 
has no values of — oo. This is a substantive restriction, since it fails for the 
convex program with finite value 

(8) inf(-.y) subject to (x2 + y2f/2- x < 0. 

Using this blanket assumption, in the case that t>(P) is finite, it can be 
shown that (DE) holds if and only if 2 contains at least one support <J* G 2. 
By a support we mean a m.n.i. function with a*(0 , . . . , 0) > 0 satisfying 
identically 

^ val(ü!, . . . , t>„ « „ . . . , us) - a*(ü„ . . . , 1?,, ti„ .-.., wj > Ü(P), 

for(ü„ . . . , vr, w„ . . . , us) G IM. 

In fact, the optima to (D), when (DE) holds, are precisely such supports a*. 
Moreover, if x* is an optimum of (P) and a* is an optimum in (D), and (DE) 
holds, then the following saddle-point condition holds: 

(SP) L(JC, 0*) > L(x*> a*) > L(x*> o) for all x G S, o G 2. 

A converse to (SP) is also valid, in the following sense. If 2 contains the 
function Z which is identically zero, and if the unboundedness condition 

(UBD) sup L(x,o) - +00 

holds whenever x is not feasible in (P), then (SP) implies that x* is optimal in 
(P), and a* is optimal in (D), and (DE) holds. 

(All claims in the last several paragraphs are exercises in elementary 
algebra!) 

Our approach above follows Gould [8] closely. The main point here is this, 
that in order to obtain (DE) and (SP), etc., one does not need to know the 
graph v0 = val( —, — ) exactly: one needs instead to simply know one func
tion v0 — t>(P) 4- a (—, — ) which lies entirely below this graph and touches it 
at (o(P), 0, 0). 

Some of the ideas occurring in connection with generalized Lagrangians 
appear in a simpler form in Everett's seminal paper [6], where the ordinary 
linear Lagrangian (see §2 below) is discussed from the perspective of linear 
affine supports for val(—, — ). 

1.1. Sensitivity analysis. Suppose that a G 2 and that 
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(10) inf L(JC,<T) = L(X°,O) 
XBS 

with x° E S. Then it is not hard to show that x° is optimal for the following 
problem, which is like (P) except for the change in the right-hand-side: 

infimize /0 (x) 

(P) subject to ft (x) < v?> / = 1 , . . . , r, 

gf(x) = wf, i = 1, • . . , 5. 

In (P)', we have set vf = ƒ (x°) and w,° = g^x0) for all /. 
In the course of solving (P), often several problems of type (10) are solved, 

and by the previous remark one thereby obtains some information about 
changes in the optimum to (P) as the right-hand-side is varied. Since usually 
only a few constraints of (P) are exact, while other constraints can often be 
"fudged" somewhat in the applications, this sensitivity information can be 
significant and useful. 

Gould provides sensitivity results of this type [8] in a similarly general 
setting. Everett appears to be the first to have emphasized the importance of 
this sensitivity information for the usual linear Lagrangian (see §2 below). 

2. The linear Langragian and convex programs. Most of what is known 
about dual problems (D) is for the convex programming problem, in which 
each function ƒ in (P) is convex and each function g( is linear affine on Rn. 
Here the function class 2 is taken to be the class of m.n.i. linear functions, i.e. 

r s 

( u cr(ü„ . . . , ür, K„ . . . , us) = 2 \t>/+ 2 Op* 

\ < 0, / = 1, . . . , r. 

Note that (UBD) holds for the class (11). 
For this case we have the following sufficient condition for (DE) in convex 

programming with the linear class (11), when (P) is consistent and has finite 
value Ü(P): (1) S is convex; (2) There is a "Slater point" x° in the relative 
interior of S, which satisfies all the contraints of (P), for which the inequality 

(12) / , ( * ° ) < 0 

holds for all S that are not linear affine, i =£ 0. As a consequence, when all 
functions/, i ^ 0, and gt are linear affine, the (DE) always holds if D(P) exists 
and is finite. 

A simple example from the literature shows why some kind of "constraint 
qualification" like (12) is, in general, needed for (DE) even in the convex case. 
Take as (P) the convex program 

(8) ' inf e~y subject to (x2 + y2)l/2~~ x < 0. 
Clearly, this program (8)r has t>(P) = 1, since y = 0 is forced by the con
straint. However, for any scalar X = X1 < 0, 

(13) inf (e-» - X((x2 + y2)l/2 - *)) < 0, 

hence t>(D) = 0 is attained at X * 0. 
The sufficient condition (12) given above, for (DE) to hold in convex 
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programs, yields an alternate version of the Kuhn-Tucker Saddle Point 
Theorem. This theorem states that, under certain hypotheses, to every opti
mum x* of (P) there is an optimum o* of (D) such that (SP) holds; and 
conversely, (SP) implies that x* and a* are optima to their respective 
problems. The theorem has provided much of the impetus for the work in 
duality, and is closely related to the Fenchel Duality Theorem which is stated 
in terms of convex conjugate functions (see Magnanti's note [14]). 

The textbooks of Rockafellar [21], and Stoer and Witzgall [24] provide 
well-known improvements of FenchePs result that are due to the authors, in 
the conjugate function framework, as well as extensive information about the 
linear Lagrangian (11) in the convex case. 

3. The quadratic Lagrangian. The requirement (DE) for a "correct" dual 
problem (D) is weaker than requiring the optimal "activity levels" x* emerg
ing from (P) (when the optimum in (P) is attained) to be those also optimal in 

(D) . inf L(x,o*) 

whenever a* is optimal in the dual, i.e., 

(14) v(D) - inf L(x, a*). 
x&S 

To be specific, an optimum x* to (P) does indeed provide an optimum to 
(D)a* when (DE) holds (recall (SP)), but the converse may fail: some optima 
to (D)a* may not even be feasible in (P). 

Consider, for example, the linear class (11) in the linear programming case 

infimize ex 
(15) subject to a'x - 6, < 0, i = 1, . . . , r, 

g*x - fy =* 0, I = 1 , . . . , J 

with c, a', g' E Rn and bi9 h( G R. Here we have S * Rn and 

(16) L(x, o) - (c - £ V - S fa1)* + ( 2 \b, + 2 eA 
\ i = l i = l / W = l i - l / 

and therefore (DE) implies simply 

c - 2 V - 2 (fig1 = 0, X, < Ofori = 1, . . . ,r, 
( 1 5 ) , ^ i i . i 

2 \b, + 2 0A - t>(P) 
J = I i = i 

which places no constraints on x G Rn whatever. Here (15)' is simply the 
ordinary dual to (15) in the linear programming theory (note by (5) that the 
last equation in (15)' is equivalent to maximizing 2/X/6,. 4- 2,0,7*,). 

The development of generalized dual problems (D) and generalized Lan-
grangians (3) has been prompted by both the desire to treat nonconvex 
instances of (P) à la Kuhn and Tucker, and to improve upon the properties of 
the ordinary linear Lagrangian (3), (11) for the convex programming problem. 
Intuitively speaking, what one cannot accomplish with linear forms (11) 
might well be possible with quadratic forms; hence we consider the class 2 of 
all quadratic functions 
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(17) o'(vv > . . , vr, w„ . . . , « , ) = 2 (\v, - pvf) + 2 (OM - puf) 
i = ! i « l 

where p > 0. Now (17)' is not quite correct, since it is not m.n.i.; to make or 

into an m.n.i. function a we set 

(18) °(Vv • • • > ür» w„ . . . , M,) = sup{a'(t?'„ . . . , t>;, «„ . . . , ti,)| 

t?/ > t>r, i = 1, . . . , r) 

and an easy calculation gives, for p > 0, 

(17) 
o(vx>..., t?r, « ! , . . . , w,) - 2 \-maxl q, y - "~ pmax2 t>„ — 

1 = 1 

If p « 0 then a ~ a' provided all \ < 0; otherwise o is infinite (hence 
invalid). 

The earliest results regarding (17) were obtained by Arrow and Solow [2], 
Hestenes [12], [13], Powell [19], and Haarhoff and Buys [11]. Rockafellar [22], 
[23], has done an extensive investigation of this quadratic Lagrangian from 
the perspective of the dual program (D), and has established that it can 
obtain the duality equality (DE) in many nonconvex settings where (DE) is 
false for the linear Lagrangian (11). When (DE) holds for a convex program 
Rockafellar has shown that the optima in (D)0« are the optima of (P), when 
the optimum a* of the dual has p > 0 (as can be arranged whenever (DE) 
holds). 

By choosing all 0t = 0 in the case r = 0, we obtain one "penalty method" 
for solving (P) that has been attributed to Courant. 

For a study of a large family of generalized Lagrangians, including the 
quadratic Lagrangian (17), see [1] and [15]. In particular, Mangasarian 
provides several classes 2 of differentiable m.n.i. functions a, which are useful 
in problems of type (10). 

3.1. Quadratic Lagrangians and derivatives of val(~~, —). The reason for 
considering quadratic forms (17)' with purely diagonal entries 

P(2»,2 + 2 0 
as the quadratic part, is that a support need only get under the graph of 
D0 = val( —, — ); hence, whatever can be accomplished with a general 
quadratic form can be done by (17)'. 

By the same reasoning, if Af, . . . , A*, Of,.. . , 0*, p* are the parameters of 
a quadratic Lagrangian (17) that is optimal in (D), so are Af, . . . , A*, 
Of, . . . , 0*, p f or p > p*. In particular, if (P) is a convex program for which 
(DE) holds for the linear Lagrangian, and Af, . . . , A*, Of, . . . , Of are the 
parameters of an optimum to (D) with the Lagrangian (11), then Af, . . . , A*, 
0f, . . . , 0*, p are the parameters of an optimum in (D) for the quadratic 
Lagrangian for any p > 0. 

A converse to the result of the last paragraph also holds for a convex 
program (P). In this case, it is easy to show that val( — , — ) is an extended 
convex function and, hence, that its epigraph 

file:///-maxl
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(19)epi(val) = {(Ü0, VV • . . , t?r, ul9.. . , W,)|Ü0 > val(üj , . . . , vr, uh . . . , us)} 

is a convex set. Suppose (DE) holds and o* with parameters Af,. . . , X*, 
Öf,. . . , 9*, p* is optimal in (D). Then since val(-, - ) - <J*(- , - ) > Ü(P) 

is an identity, it follows that epi(val) has no inner points in common with the 
convex hypograph given by 

(20) hypo(a') = (ü 0 , Vl9 . . . , IV, l lj , . • . , W5) 

€ é < 2 ( \ % - P % 2 ) 

+ 2 (#f ", - (>*uf) + t;(P) 
1*1 

By standard results, there is a hyperplane separating epi(val) from hypo(a') 
(not strictly) which touches hypo(a') at (t>(P), 0, 0). From the quadratic 
nature of a' in (17)', this hyperplane can only be the linear part of (17)'; 
therefore the linear Lagrangian (11) also yields (DE) with parameters 
A f , . . . , Af, Öf,.. . , $*. See [21]. 

Whether or not the constraints of (P) are convex, the "near disjointness" of 
epi(val) from hypo(a') when (DE) holds, together with the nature of the 
unique hyperplane touching hypo(a') at (t>(P), 0, 0), yields uniform lower 
bounds on the directional derivatives of val(-, — ) at (0, 0), etc. 

For instance, it is easy to see that, when val(-, — ) has a derivative at (0, 0) 
and (DE) holds, this derivative must be 2Aft} + 2Ofut. Now quite fre
quently, ft (x) = f?(x) — bf, where bf is the quantity available of the ith factor 
of "production", and^°(x) is the quantity of the ith factor needed to maintain 
"activity level x." Given this economic interpretation of (P), if mi > 0 is the 
(externally given) current market price of the ith factor, we have the following 
diagonostic obtained from the directional rates of change of val( —, — ): if 
7T, < ( — Af), then it is advantageous to purchase at least some small addi
tional amount of factor /; if iri > (-Af), it is advantageous to sell a small 
amount of factor /. 

From a global perspective, this diagnostic may seem odd, since it refers to a 
problem (P) with the right-hand-sides constrained by fixed factor availabili
ties bf. One might view it as advantageous to have the factor availabilities 
introduced as variables, and to have their levels, along with those of the 
activities, optimally set by a larger programming problem. However, this 
freedom to choose levels may not be present in models of short-run problems; 
and the model (P) itself may fail to be globally accurate, due to many factors, 
such as local linearization of a (globally little known) demand curve. It is 
therefore of value to have a diagnostic that provides directions for local 
improvement. Moreover, the diagnostic is particularly useful since in most 
applications very many Af are zero. This diagnostic has been fruitfully 
employed by managers in connection with the linear program (15) for up to 
two decades in some industries. 

4. Duality and stationarity conditions. When (DE) holds, for every support 
a*, we have the "complementary slackness" condition 

(CS) o*( ƒ, (x*), ...J, (**), 0 , . . . , 0) - 0 
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which is part of what are called the "Kuhn-Tucker necessary conditions" on 
derivatives, the remaining conditions being 

grad f0(x*) - £ T " (<*• • • • • t>*, 0 , . . . , 0) grad ƒ,(**) 
(KT) ' " ' öv' 

~ S ^ (t>f,..., v*, 0,. . . , 0) gradg,(x*) = 0 

when the chain-rule applies. In (CS) and (KT), x* is any optimum in (P) that 
is in the interior of S, and t>f* = ft\(x*), i = 1,. . . , r. 

(CS) is an algebraic exercise. To obtain (KT), note that x = x* is a 
minimum to L(x, a*) by (SP). By differentiating L(x, a*) at x = x*, we 
obtain (KT); when the indicated derivatives do not exist, useful information 
of the type (KT) can often still be obtained, from noting that all directional 
derivatives of L(x, a*) at x = x* are > 0. 

For the linear (11) class as 2, (CS) is equivalent to the logical conditions 
(21) S( (**) < 0 implies \ = 0, i = 1, . . . , r. 
I.e., only those inequality constraints that are "tight" at the optimum (ƒ(**) 
= 0) can occur with nonzero 3a*/3t// in (KT). 

A frequently-used approach for the numerical solution of (P) is to solve the 
necessary conditions (CS), (KT) for the linear Lagrangian (11) (often solving 
together with the functional constraints of (P)), thus by passing the uncon
strained optimizations of type (10). For r = 0, this is the procedure that we 
advocate to our undergraduate students; except for homework exercises 
deliberately chosen for algebraic simplifications that render solutions trivial, 
this technique is simply a partial reduction of (P) to solutions of nonlinear 
equations. The latter need not be that easy to obtain! As in our calculus 
classes, second-order conditions are used to partially determine when the 
necessary conditions are also sufficient for (local) optima. 

4.1. Stationarity conditions without duality. A primary reason for interest in 
these necessary conditions (CS) and (KT), is that their applicability is 
potentially broader than that of the whole development for the dual problem 
(D), since these conditions remain necessary for a much wider class of 
optimization problems than those for which dual programs have been estab
lished. For instance, for s = 0, by a result of John, both (CS) and (KT) are 
valid for the class 2 of linear functions (11), under appropriate constraint 
qualifications, if only the functions ƒ• are continuously differentiable-no 
convexity is assumed here. 

Some limitations of the approach via stationarity conditions alone, are the 
lack of sensitivity analysis, the fact that programs (P) arising in practice may 
involve nondifferentiable functions (see [25] and the volume in which it 
appears), and the difficulties in determining which solutions to (KT) provide 
optima for (P). 

Conceptually, the abstract dual problems (D) go part of the way in 
explaining why (KT) is valid for the linear class 2 in so many settings. In fact, 
the partial derivatives 3a*/3^. and 3a*/3M,- in the "general" formula (KT) are 
simply scalars \ and 9(; since a* is m.n.i, we will also have all 3a*/du( < 0. 
Moreover, for this derivation one needs x* to be simply the optimum to a 
"local" dual problem (D), i.e., a dual where S is an open neighborhood with 
JC* G S. 



332 BOOK REVIEWS 

Chapter 5 of Hestenes' textbook is devoted to interrelations between (CS) 
and (KT) for the linear class 2, and local quadratic dual programs (D) with 2 
the quadratic class. A strengthened version of the second-order sufficient 
conditions, for solutions to linear (KT) to be local optima to (P), is shown to 
insure that a local quadratic dual problem is valid at an interior point x*. 
Similar results have been obtained by Mangasarian [15] and by Rockafellar 
[22]. 

Rockafellar provides other valuable information on local quadratic dual 
problems when s = 0, under very weak assumptions (e.g., /0 continuous). He 
shows that, for (DE) to hold in a local dual problem, it is both necessary and 
sufficient that there exists a function a'(t>,,. . . , vr) such that the identity 

(22) val(t>!, . . . , vr) - o'(vlf ...,vr)> v(P) 

holds in some neighborhood of the origin, where a' is of class C(2) and 
o'(0) = 0. Furthermore, if one changes "max" to "sup" in (D), the require
ment that a' is of class C(2) can be replaced by simply requiring a' to be 
continuous. 

For a different perspective on the linear Kuhn-Tucker conditions, see [9]. 

5. Other comments on the textbook. The author's text provides a treatment 
of the dual problem (D) for the convex programming problem with the linear 
class (11), and states a widely-used version of the Kuhn-Tucker Saddle Point 
Theorem. While building to this result, the author establishes a number of 
basic results on polarity, linear inequality systems, and convex cones, which 
are of broad applicability in all areas of mathematical programming. 

A highlight of the author's results on the quadratic Lagrangian is his 
statement of an algorithm for (P) when S is compact, r = 0, and certain 
additional assumptions hold. This algorithm is his well-known "method of 
multipliers", in which a sequence of problems of the type 

(23) inf L(x,f)0 + Aq)9 

q = 1, 2, . . . , are successively solved, with Â  > A0 > 0 and 0$l\ . . . , 0}q) 

updated by a rule of the form 

(24) 0<*+1>- 0<«>- 2Aqgi(x
(q+l)). 

In (24), x(q+l) is an optimum to (23). If p(0) is properly chosen, the sequence 
x(q) converges to an optimum to (P). Clearly, if the work on generalized 
duality and generalized Lagrangians is to be of value in practice, we shall 
need more information and positive results on methods like the author's (24). 
For an extension of Hestenes' algorithm to the case r > 0, see Mangasarian 
[15]. 

In addition to the main developments of the text discussed above, the 
author provides considerable information on quadratic forms, a subject which 
is helpful throughout nonlinear programming. Also, the author uses the 
quadratic Lagrangian (17) as a point of departure to discuss a few results on 
penalty methods. Finsler's Lemma is established from the perspective of 
penalty functions. 

The textbook has been designed to appeal to users of optimization theory 
in mathematics and related fields, as well as to specialists. The elementary 
versions of many results are often presented before full generality is obtained, 
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and proofs are entirely rigorous. In terms of developing motivation for 
results, by means of a series of examples which illustrate many facets of the 
problems discussed, the text is unexcelled in its area. 

6. A few general references. For an overview of nonlinear programming 
which discusses important topics we have omitted here, the reader may wish 
to consult Mangasarian's survey [16]; also Oettli [17] has an extensive 
bibliography of the area. 

Due to space limitations, we have not discussed the considerable literature 
that is concerned with techniques for unconstrained function minimization, 
even though these techniques are essential for the solution of problems like 
(10) when S = R". This nonlinear programming topic is not directed toward 
extending classical results. Instead, the focus is on computational issues, such 
as avoiding the n2 function evaluations of a Hessian matrix at each iteration, 
which occurs in the "obvious" iterative method for solving minimizations in 
twice continuously differentiable functions (i.e., moving toward the minimum 
of the approximating quadratic form). In designing algorithms which are 
computationally tractable, and have excellent asymptotic convergence be
havior, one encounters considerable mathematical difficulty toward establish
ing their convergence and convergence rate. For a survey of this topic, see 
[20]. 

Regarding the stationarity approach to nonlinear programming, the text 
[18] is a general reference for many solution techniques for nonlinear equa
tions and for nonlinear minimizations. Typically, the techniques discussed in 
[18] and [20] yield local convergence, so that the user must supply a "good" 
starting point for these iterative methods. 

Research in complementarity theory and fixed point computation, another 
area of mathematical programming, has lead to a new algorithms for solving 
certain nonlinear equations, which are globally convergent to at least one 
solution to these equations. Eaves and Scarf [5] have achieved a unification of 
many results and techniques, which is extremely concise and lucid, and can 
also serve as an introduction to that area. Earlier unifications (e.g., [10]) 
stressed the use of combinatorial principles, such as an "algorithmic version" 
of a highly abstracted Sperner's lemma, as the main device toward substan
tially limiting the search which is (implicitly) involved in the complementarity 
techniques. In the treatment of Eaves and Scarf, these discrete combinatorial 
principles, as well as the results previously derived from them, are, surpris
ingly enough, all obtained as consequences of entirely elementary results on 
solutions of piecewise-linear equations on the continuum. For some com
plementarity algorithms for convex programs, see [10] and the references 
cited there. 

As we mentioned above, the convex programming problem is one special 
case of (P) for which a substantial body of information exists, which of course 
utilizes arguments that are quite specialized to the case studied. Another 
well-understood special case of (P) is geometric programming [4], which was 
motivated by a study of the kind of nonlinearities occurring in chemical 
processes. The characteristic format of a geometric program is the minimiza
tion of a sum of positive monomials (with possibly negative or fractional 
exponents) in positive variables, subject to several functions of the same type 
not exceeding unity. Clearly, this format is broad enough to allow a repre-
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sentation of nonlinear functions by regression fittings on monomials, pro
vided that the positivity of monomial coefficients is realized. Geometric 
programming has been used in applications as distant from chemistry as 
marketing. The geometric inequality allows a partial reduction of geometric 
programs to linear programs, sufficient to permit a specialized dual construc
tion and to provide the foundation for several computational approaches; see 
[3]. 

The textbook [7] provides information on several penalty methods. How
ever, the literature on these methods is very extensive, and much has been 
done since the publication of [7]. Advances in this area are usually closely 
related to work on augmented or generalized Lagrangians, so an examination 
of the references in our references below will lead to much of the penalty-
method literature. 
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Approximation of functions of several variables and imbedding theorems, by S. 
M. Nikol'skiï, Die Grundlehren der mathematischen Wissenshaften, Band 
205, Springer-Verlag, New York, Heidelberg, Berlin, 1975, viii + 420 pp., 
$46.50. 

This book is interesting and important. Although it advertises itself in the 
introduction as a compact exposition of a number of fundamental questions 
that have been brought to completion, it is no such thing. In particular, no 
treatise of 400 plus pages (480 pp. in the original) can be called compact. It is, 
however, a fascinating description of a mathematical adventure that failed in 
its main goal but has produced, and continues to produce, much excellent 
mathematics. 

Unfortunately, the editors of this series have given us a seriously flawed 
English version of the Russian edition that was published in 1969. It has been 
so badly done that I will take up the question of the translation and its editing 
in some detail, after I first discuss the text proper. 

The book's topic is classes of functions which satisfy various smoothness or 
differentiability conditions and the determination of which spaces are con
tained, continuously, in which other spaces or can be mapped, continuously, 
into such other spaces by appropriate restriction or extension maps. The 
method used is the method of best approximation by trigonometric polynomi
als and in the nonperiodic case, by their analogues, the restriction to real 
space of entire functions of exponential type. We are told in this book how 
far Nikol'skiï and his colleagues got with this topic by the mid 1960's. 

The classes of spaces considered are denoted W, H> B, and L spaces. These 
are decorated in various ways to indicate the amount of smoothness, the 
Z^-norm in which the smoothness is measured, the space on which the 
functions are defined, and the "directions" in which the smoothness is 
measured. Refinements of the notation permit consideration of "anisotropic" 
spaces where one has different Z^-norms and degrees of smoothness for each 
direction. Our discussion will mostly be restricted to the isotropic case. 

Most of the material in the text is concerned with the case where the 
functions are defined on all of a Euclidean space R". There is some discussion 


