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In this note we announce results and construct examples which show that a 
large number of characteristic classes for real foliations vary linearly independently. 
This generalizes the result of Thurston on the variation of the Godbillon-Vey in
variant [T]. The method used is a special case of the general theory of residues 
of singular foliations due to Baum and Bott [BB]. 

DEFINITION. Let r be a codimension q foliation on a manifold M. A vec
tor field X on M is a T vector field for r if [X, Y] is tangent to r whenever Y is 
tangent to r. The singular set of X is the set of points where X is tangent to r. 

Let r be an oriented codimension q foliation on an oriented manifold M 
Let X be a Y vector field for r and assume the singular set of X consists of a 
single compact leaf TV of r. On M - N, r and X span a foliation T of codimension 
q - 1. Let a*: H*(WOq_t) —• H*(M - N\ R) be the natural map associated to 
f. Each element $ of H2q~l(WOqmm.l) determines in a natural way an element 0 
of H2q(BUq\ R). Choose an embedded normal sphere bundle S of N in M and 
let i: S —> M - N be the inclusion. Denote by o: H2q " * (5; R) - * W(N\ R) 
integration over the fiber of the sphere bundle S. On M, r and X span a singular 
foliation with singular set N. Applying the theory of [BB], 0 G H2q(BUq\ R)> r 
and X determine a cohomology class Res^(r, X, N) G Hq(N; R). We have 

THEOREM 1. For M, Nf r, and X as above and$eH2q^x(WOq_x), 

o(/*a*(£)) = Rcs0(r, X, N). 

Let 0 G H2q(BUq_x\R). Then 0 and f determine an element S0(r) G 

H2q"l(S\ R/Z), the Simons' character of f, [ChS]. The element <t> determines in 

a natural way an element 0 in H2q(BUq\ R). We have 

THEOREM 2. ^ ( f ) ^ ] = Res0(r, X, N)[N] mod Z, where [S] and [N] are 

the homology classes determined by S and N. 

We give some examples which show that these residues are nontrivial and in 
fact vary linearly independently. 

EXAMPLE 1. Denote by G the product of k copies of the special linear 
group SL2R. Let AT be a maximal compact subgroup of G and T a uniform dis-

AMS (MOS) subject classifications (1970). Primary 57D20, 57D30; Secondary 58D0S. 
Copyright © 1977, American Mathematical Society 

397 



398 JAMES L. HEITSCH 

crete subgroup of G so that T\G/K is a compact manifold. Let M be the flat R2k 

bundle M = (G/K) x r R2k with the natural flat foliation r. Choose k nonzero 
numbers ixx,... , ytk and let X be the vector field on R2k 

k 

1=1 

The natural action of G on # 2 * preserves XM and so X^ induces a T vector field 
XM on Af with singular set the zero section N = T\G/K. For <t> E H*k(fiU2k\ JR) 
we compute 

i> , v An «k<K»i, »i, »2> »i> ••• > »k> »k>°1 

Res0(r, X TV) = . 
(MiM2 • • • M*)2 

Here vol is a fixed volume form on N and 0 0 ^ , . . . , fxk) is 0, thought of as an 
invariant polynomial on the lie algebra of the unitary group U2k, applied to the 
diagonal matrix d iag^, jt^, M2 > M2> • • • > M*, M*)-

EXAMPLE 2. Let G and K be as in Example 1. We let G x R act on 

R2k+1 _ R2k x ^ b y t h e natural action of G on R2k and by the action of R 
on JR

2Ap+1 defined as follows. Let co be a smooth, even, nonnegative function 
on R such that 

(i) 0 < co(x) < 1 for all x * 0. 
(ii) For all x, \x\ > fc, CJ(X) = 1. 

(iii) co and all its derivatives are zero at x = 0. 
On the lie algebra level R acts on / ? 2 * + 1 by d/dt—+ [*2*+i M* 2*+i) 9 / 9* 2*+i-
Choose a uniform discrete subgroup T of G x R so that T\(G x ƒ?)/£ is a com
pact manifold. Set I = ( C x R)/K x r # 2*+* and let T be the natural flat folia
tion on M. Choose nonzero real numbers / i j , . . . , nk+1 and let X^ be the vector 
field on R2k+1. 

X M = ( Z Mi(*a/-i 8 / t oai-i +*2*9/9*2i)J 

+ ^ 2 A ; + I * 2 * + I ^ * 2 A ; + I ) 9 / 9 * 2 * - M ' 

The action of G x .R on R2k +* preserves XM and so XM induces a T vector field 
Xp on Af with singular set the zero section N = IA(G x R)/K. For 0 E 
H*k+2(BU2k+l;R) we compute 

„ , v ^ 2nkip(nl, nl9 /i2, M2, --• > Mfe> Mfc> 0)vol 
Res0(r, X, TV) = ; -5 . 

(MIM2 • • • M * ) X + I 
As before vol is a fixed volume form on N and # 0 ^ , . . • , fxk, 0) is <t> applied to 
the diagonal matrix diagOuj, Mi > M2 > M2 > • • • > M* > M* > 0). 

Let R[ox,... , on] be the algebra of symmetric polynomials on the vari
ables fix,..., iin and denote by R^ the subalgebra generated by the elements 
0*0*1» Mi >M2>M2> ••• >Mw >Mw ,0 , . . . , 0 ) , i = 1, . . . , n - l . L e t f l ^ be the ideal 
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in R^ generated by the elements oi(^xl, ^it, fx2, ix2, ... , fxm, fxm,0,... ,0) where 
i = 1,3, 5 , . . . , 2t + 1 and 2 f + l = / i - 2 o r / i - l . Now set a(m, h) = the dim
ension of the space of elements of degree n in R^o* an(* Km> n) = the dimension 
of the space of elements of degree n in R^. Finally set a(2k 4- 1) = a(k, 2k + 1), 
a(2k) = a(k, 2k) - 1, b(2k 4- 1) = b(k, 2k 4- 1) and b(2k) = ft(fc, 2*) - 1. The 
characteristic classes mentioned in Theorems 1 and 2 come from universal char
acteristic classes in the R and R/Z cohomology of BFq, the classifying space for 
codimension q foliations. Combining the examples with Theorems 1 and 2 we 
see that BV has many cohomology classes which vary linearly independently. In 
particular we may view these classes as maps from the homology of BTq to R or 
R/Z and so obtain 

THEOREM 3. H2q+l(Brq\Z) admits epimorphisms onto Ra^q+l^ and 
(/l/Z)*<2«+1>. 

In Example 1, the foliation ? , spanned by r and X on M - N is transverse 
to the sphere bundle M° = G/K xr s2k~l provided all the \xt are close to 1. We 
lift this foliation to the bundle overM0, P = G/K x r S02k (actually the bundle 
(TV?) *K S02k) obtaining a foliation with trivial normal bundle. The projection 
map 7r: P—• M° is injective in cohomology in dimension 4k - 1. Thus we have 

THEOREM 4. Let FTq be the classifying space for codimension q real fol
iations with trivial normal bundle. Then H^k_x{FT2k_x; Z) admits an epimor-
phism onto Rb(2k\ 
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