RESIDUES AND CHARACTERISTIC CLASSES OF FOLIATIONS

BY JAMES L. HEITSCH

Communicated by E. H. Brown, December 2, 1976

In this note we announce results and construct examples which show that a large number of characteristic classes for real foliations vary linearly independently. This generalizes the result of Thurston on the variation of the Godbillon-Vey invariant [T]. The method used is a special case of the general theory of residues of singular foliations due to Baum and Bott [BB].

DEFINITION. Let τ be a codimension q foliation on a manifold M. A vector field X on M is a Γ vector field for τ if [X, Y] is tangent to τ whenever Y is tangent to τ . The singular set of X is the set of points where X is tangent to τ .

Let τ be an oriented codimension q foliation on an oriented manifold M. Let X be a Γ vector field for τ and assume the singular set of X consists of a single compact leaf N of τ . On M - N, τ and X span a foliation $\hat{\tau}$ of codimension q - 1. Let $\alpha^* \colon H^*(WO_{q-1}) \to H^*(M - N; R)$ be the natural map associated to $\hat{\tau}$. Each element $\hat{\phi}$ of $H^{2q-1}(WO_{q-1})$ determines in a natural way an element ϕ of $H^{2q}(BU_q; R)$. Choose an embedded normal sphere bundle S of N in M and let $i: S \to M - N$ be the inclusion. Denote by $\sigma: H^{2q-1}(S; R) \to H^q(N; R)$ integration over the fiber of the sphere bundle S. On M, τ and X span a singular foliation with singular set N. Applying the theory of [BB], $\phi \in H^{2q}(BU_q; R)$, τ and X determine a cohomology class $\operatorname{Res}_{\phi}(\tau, X, N) \in H^q(N; R)$. We have

THEOREM 1. For M, N, τ , and X as above and $\hat{\phi} \in H^{2q-1}(WO_{q-1})$,

$$o(i^*\alpha^*(\hat{\phi})) = \operatorname{Res}_{\phi}(\tau, X, N).$$

Let $\phi \in H^{2q}(BU_{q-1}; R)$. Then ϕ and $\hat{\tau}$ determine an element $S_{\phi}(\hat{\tau}) \in H^{2q-1}(S; R/Z)$, the Simons' character of $\hat{\tau}$, [ChS]. The element ϕ determines in a natural way an element ϕ in $H^{2q}(BU_q; R)$. We have

THEOREM 2. $S_{\phi}(\hat{\tau})[S] = \operatorname{Res}_{\phi}(\tau, X, N)[N] \mod Z$, where [S] and [N] are the homology classes determined by S and N.

We give some examples which show that these residues are nontrivial and in fact vary linearly independently.

EXAMPLE 1. Denote by G the product of k copies of the special linear group SL_2R . Let K be a maximal compact subgroup of G and Γ a uniform dis-

AMS (MOS) subject classifications (1970). Primary 57D20, 57D30; Secondary 58D05. Copyright © 1977, American Mathematicel Society

crete subgroup of G so that $\Gamma \backslash G/K$ is a compact manifold. Let M be the flat R^{2k} bundle $M = (G/K) \times_{\Gamma} R^{2k}$ with the natural flat foliation τ . Choose k nonzero numbers μ_1, \ldots, μ_k and let X be the vector field on R^{2k}

$$X_{\mu} = \sum_{i=1}^{k} \mu_{i}(x_{2i-1}\partial/\partial x_{2i-1} + x_{2i}\partial/\partial x_{2i}).$$

The natural action of G on \mathbb{R}^{2k} preserves X_{μ} and so X_{μ} induces a Γ vector field X_{μ} on M with singular set the zero section $N = \Gamma \backslash G/K$. For $\phi \in H^{4k}(BU_{2k}; R)$ we compute

$$\operatorname{Res}_{\phi}(\tau, X_{\mu}, N) = \frac{\pi^{k} \phi(\mu_{1}, \mu_{1}, \mu_{2}, \mu_{2}, \dots, \mu_{k}, \mu_{k}) \operatorname{vol}}{(\mu_{1} \mu_{2} \cdots \mu_{k})^{2}}$$

Here vol is a fixed volume form on N and $\phi(\mu_1, \ldots, \mu_k)$ is ϕ , thought of as an invariant polynomial on the lie algebra of the unitary group U_{2k} , applied to the diagonal matrix diag $(\mu_1, \mu_1, \mu_2, \mu_2, \ldots, \mu_k, \mu_k)$.

EXAMPLE 2. Let G and K be as in Example 1. We let $G \times R$ act on $R^{2k+1} = R^{2k} \times R$ by the natural action of G on R^{2k} and by the action of R on R^{2k+1} defined as follows. Let ω be a smooth, even, nonnegative function on R such that

- (i) $0 \le \omega(x) \le 1$ for all $x \ne 0$.
- (ii) For all $x, |x| > \frac{1}{2}, \omega(x) = 1$.
- (iii) ω and all its derivatives are zero at x = 0.

On the lie algebra level R acts on R^{2k+1} by $\partial/\partial t \longrightarrow |x_{2k+1}| \omega(x_{2k+1}) \partial/\partial x_{2k+1}$. Choose a uniform discrete subgroup Γ of $G \times R$ so that $\Gamma \setminus (G \times R)/K$ is a compact manifold. Set $M = (G \times R)/K \times_{\Gamma} R^{2k+1}$ and let τ be the natural flat foliation on M. Choose nonzero real numbers μ_1, \ldots, μ_{k+1} and let X_{μ} be the vector field on R^{2k+1} .

$$\begin{aligned} X_{\mu} &= \left(\sum_{i=1}^{k} \mu_{i}(x_{2i-1} \partial / \partial x_{2i-1} + x_{2i} \partial / \partial x_{2i}) \right) \\ &+ \mu_{2k+1} x_{2k+1} \omega(x_{2k+1}) \partial / \partial x_{2k+1}. \end{aligned}$$

The action of $G \times R$ on \mathbb{R}^{2k+1} preserves X_{μ} and so X_{μ} induces a Γ vector field X_{μ} on M with singular set the zero section $N = \Gamma \setminus (G \times R)/K$. For $\phi \in H^{4k+2}(BU_{2k+1}; R)$ we compute

$$\operatorname{Res}_{\phi}(\tau, X, N) = \frac{2\pi^{k}\phi(\mu_{1}, \mu_{1}, \mu_{2}, \mu_{2}, \dots, \mu_{k}, \mu_{k}, 0)\operatorname{vol}}{(\mu_{1}\mu_{2}\cdots\mu_{k})^{2}\mu_{k+1}}.$$

As before vol is a fixed volume form on N and $\phi(\mu_1, \ldots, \mu_k, 0)$ is ϕ applied to the diagonal matrix diag $(\mu_1, \mu_1, \mu_2, \mu_2, \ldots, \mu_k, \mu_k, 0)$.

Let $R[\sigma_1, \ldots, \sigma_n]$ be the algebra of symmetric polynomials on the variables μ_1, \ldots, μ_n and denote by R_m^n the subalgebra generated by the elements $\sigma_i(\mu_1, \mu_1, \mu_2, \mu_2, \ldots, \mu_m, \mu_m, 0, \ldots, 0), i = 1, \ldots, n-1$. Let R_{m0}^n be the ideal

in R_m^n generated by the elements $\sigma_i(\mu_1, \mu_1, \mu_2, \mu_2, \dots, \mu_m, \mu_m, 0, \dots, 0)$ where $i = 1, 3, 5, \dots, 2t + 1$ and 2t + 1 = n - 2 or n - 1. Now set a(m, n) = the dimension of the space of elements of degree n in R_m^n , and b(m, n) = the dimension of the space of elements of degree n in R_m^n . Finally set a(2k + 1) = a(k, 2k + 1), a(2k) = a(k, 2k) - 1, b(2k + 1) = b(k, 2k + 1) and b(2k) = b(k, 2k) - 1. The characteristic classes mentioned in Theorems 1 and 2 come from universal characteristic classes in the R and R/Z cohomology of $B\Gamma_q$, the classifying space for codimension q foliations. Combining the examples with Theorems 1 and 2 we see that $B\Gamma_q$ has many cohomology classes which vary linearly independently. In particular we may view these classes as maps from the homology of $B\Gamma_q$ to R or R/Z and so obtain

THEOREM 3. $H_{2q+1}(B\Gamma_q; Z)$ admits epimorphisms onto $R^{a(q+1)}$ and $(R/Z)^{b(2q+1)}$.

In Example 1, the foliation $\hat{\tau}_{\mu}$, spanned by τ and X_{μ} on M - N is transverse to the sphere bundle $M^0 = G/K \times_{\Gamma} S^{2k-1}$ provided all the μ_i are close to 1. We lift this foliation to the bundle over M^0 , $P = G/K \times_{\Gamma} SO_{2k}$ (actually the bundle $(\Gamma \setminus G) \times_K SO_{2k}$) obtaining a foliation with trivial normal bundle. The projection map $\pi: P \longrightarrow M^0$ is injective in cohomology in dimension 4k - 1. Thus we have

THEOREM 4. Let $F\Gamma_q$ be the classifying space for codimension q real foliations with trivial normal bundle. Then $H_{4k-1}(F\Gamma_{2k-1}; Z)$ admits an epimorphism onto $R^{b(2k)}$.

REFERENCES

[BB] P. Baum and R. Bott, Singularities of holomorphic foliations, J. Differential Geometry 7 (1972), 279-342. MR 51 #14092.

[ChS] J. Cheeger and J. Simons, *Differential characters and geometric invariants*, Lecture, Amer. Math. Soc. Summer Institute, Stanford, 1973 (unpublished).

[T] W. Thurston, Various lectures.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE, CHICAGO, ILLINOIS 60680