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Let S be an oriented surface with Riemannian metric ds?, and M" a Rie-
mannian manifold of dimension n > 2. We present here a characterization of
harmonic immersions f: § — M” which sheds some light on their differential
geometric properties. While C™ smoothness is assumed throughout, less is
needed.

To work on the Riemann surface determined by ds? on S, use conformal
parameters z = x, + ix, which correspond to ds?-isothermal coordinates x, , x,
on S. Given any local coordinates on M", write f = (f*) and f{ = 9f°/ox;
wherei=1,2and a,8,y=1,2,...,n An immersion f: S — M" is har-
monic if and only if for each a and for any ds®-isothermal coordinates x, , X,
on S

3fefox; + TgfPY =0,

where [‘%‘7 are the Christoffel symbols for the metric on M", and one sums on
the indices 8, v and i.

To any real quadratic form X = [;dxdx; on §, associate on R the qua-
dratic differential (X, R) and the conformal metric I'(X, R) given by 4Q(X, R)
= (I, —l, = 2il;,)dz* and 2I'(X, R) = (I, + l,,)dzdz respectively. Thus
X=2Re Q+TonR. (See [10].) Call Q(X, R) holomorphic if and only if
the coefficient of dz? is complex analytic in z for every conformal parameter z
on R. An immersion f: § — M" yields many quadratic forms of interest,
among them the induced metric I, and the second fundamental forms II(V) de-
termined by choices of a unit normal vector field V.

DEFINITION. An immersion f: S — M" is R-minimal if and only if
Q(1, R) is holomorphic, and I'(AI(N), R) = 0 for any choice (local or global) of
a unit normal vector field N.

An R-minimal immersion is minimal if and only if R is the Riemann sur-
face R, determined on S by I. It is known that a conformal immersion f: § —
M?" is harmonic if and only if it is minimal. Indeed, this is established in [2]
independent of the dimensions of § and M". By analogy, we have the following
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THEOREM. An immersion f: S — M" is harmonic if and only if it is R-
minimal.

This result is known for maps f: § — M?. (See [4] for references.) It is
also known that Q(I, R) must be holomorphic for any harmonic map f: § — M",
so that the only harmonic maps of the 2-sphere must be minimal ([2] and [8]).
We consider immersions here to provide (when n > 3) a well-defined (n — 2)-dimen-
sional normal space everywhere.

Note that I'(II(V), R) = 0 for all N means that the trace of II(V) with re-
spect to ds? vanishes for all N. When ds® «I, this condition alone forces a mini-
mal immersion, for it says that the mean curvature vector [11, p. 13] vanishes.
Indeed, by our Theorem, the “mean curvature vector” formed with ds? in place
of I vanishes for any harmonic immersion f: §— M". The converse can fail
when R # R. For example, if § is immersed in £ 3 with Gauss curvature K =
~1, the usual asymptotic Tchebychev coordinates [9, p. 528] are II'isothermal,
where /H2 + 11I' = HII + I, with H mean curvature. Here I'(II, R;;) = 0 but
Q(I, Ryy') is not holomorphic. Similarly, Q(I, R) holomorphic does not imply
I'(IL(NV), R) = 0 for any N. This is obvious when R = R|. Less trivially, if S is
immersed in E3 with K = 1, then Q(I, R;p) # 0 is holomorphic, but I'(Il, Ryy) =
II does not vanish [5].

The proof of the theorem is elementary, using the Gauss equations [5,

p. 160]. Some results which follow from the theorem are stated below for the
special case n = 3. Full details and proofs will appear elsewhere. Hereafter,

f: 8 — M?3 is an immersion with fundamental forms I and II, mean curvature H,
Gauss curvature K and intrinsic curvature K(I). Denote by K the sectional curva-
ture of M3 for planes tangent to S, by A = gl + kIl any positive definite linear
combination with real valued coefficients g and h, by R the Riemann surface
determined on S by ds? and by R an arbitrary Riemann surface on S. The form
II' given by \/H2 — K II' = HII — K1 is positive definite wherever K < 0 [10].
Lemmas 1 and 2 reflect the separate effects of the conditions (I, R) holomor-
phic and I'(Il, R) = 0. Theorem 2 includes a correction of the Corollary to
Theorem 2 in [7].

Lemma 1. If Q = Q(1, R) * 0 is holomorphic, then except at isolated
points where S = 0, there exists a cannonically determined function F > 0 on
S which is R-superharmonic where K(I) 2 0 and R-subharmonic where K(I) <
0 [1, p. 135].

LemMA 2. IfT(Il, R) =0 for any one R on S, then K < 0 (so that K(I)
< K), and H = 0 wherever K = 0.

THEOREM 1. If f: § — M3 is harmonic with ds* = A, then either A < I,
or else (except at isolated points where A< T) A < II'.
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THEOREM 2. If f: S — M3 is harmonic with ds* = 1I', H never zero and
0 # K(I) <0, then H'[H is not bounded.

THEOREM 3. If f: 8§ — M3 is harmonic with ds* = 1I' complete, |K/H|
bounded and K(11') < 0 then K(II') = 0.

THEOREM 4. If f: S — M?3 is harmonic with R parabolic [1,p.209],1
nowhere proportional to ds* and K(I) = 0, then K(I) = 0.
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