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Let S be an oriented surface with Riemannian metric ds2, and Mn a Rie-
mannian manifold of dimension n > 2. We present here a characterization of 
harmonic immersions/: S—+Mn which sheds some light on their differential 
geometric properties. While C°° smoothness is assumed throughout, less is 
needed. 

To work on the Riemann surface determined by ds2 on S9 use conformai 
parameters z = xt +ix2 which correspond to ds2 -isothermal coordinates xt,x2 

on S. Given any local coordinates on Mn
9 write ƒ = (fa) and f f = hf0Ljbxi 

where i = 1,2 and a, )3, y = 1, 2, . . . , n. An immersion ƒ: S —» Mn is har­
monic if and only if for each a and for any ds2 -isothermal coordinates xx, x2 

on S 

d2ridx2 + ryffy = o, 

where F^y are the Christoffel symbols for the metric on Mn, and one sums on 
the indices j3, y and i. 

To any real quadratic form X = IjjdXjdXj on 5, associate on R the qua­
dratic differential Q(X, R) and the conformai metric T(X, R) given by 4Q,(X, R) 
= ('i l ~ 2̂2 ~ 2//12>fz2 and 2r(X, R) = (lx x + l22)dzdï respectively. Thus 
X = = 2 R e n + ^ o n ^ . (See [10].) Call Q,{Xf R) holomorphic if and only if 
the coefficient of dz2 is complex analytic in z for every conformai parameter z 
on R. An immersion ƒ : S —• Mn yields many quadratic forms of interest, 
among them the induced metric I, and the second fundamental forms II(7V) de­
termined by choices of a unit normal vector field N. 

DEFINITION. An immersion ƒ : S —• Mn is R-minimal if and only if 
£2(1, R) is holomorphic, and T(II(iV), R) = 0 for any choice (local ör global) of 
a unit normal vector field N. 

An /{-minimal immersion is minimal if and only if R is the Riemann sur­
face RY determined on S by I. It is known that a conformai immersion ƒ: 5 •—• 
Mn is harmonic if and only if it is minimal. Indeed, this is established in [2] 
independent of the dimensions of S and Mn. By analogy, we have the following 
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THEOREM. An immersion f: S—• Mn is harmonie if and only if it is R-
minimal 

This result is known for maps ƒ: S—>M2. (See [4] for references.) It is 
also known that £2(1, R) must be holomorphic for any harmonic map ƒ : S —* Mn, 
so that the only harmonic maps of the 2-sphere must be minimal ([2] and [8] ). 
We consider immersions here to provide (when n > 3) a well-defined (n - 2)-dimen-
sional normal space everywhere. 

Note that r(II(7V), R) = 0 for all N means that the trace of II(7V) with re­
spect to ds2 vanishes for all N. When ds2<xl, this condition alone forces a mini­
mal immersion, for it says that the mean curvature vector [11, p. 13] vanishes. 
Indeed, by our Theorem, the "mean curvature vector" formed with ds2 in place 
of I vanishes for any harmonic immersion ƒ : S—• Mn. The converse can fail 
when R ¥"RV For example, if S is immersed in E3 with Gauss curvature K = 
- 1 , the usual asymptotic Tchebychev coordinates [9, p. 528] are II'-isothermal, 
where yjm + 1II' = MI + I, with H mean curvature. Here r(II, Ru) s 0 but 
£2(1, Ru>) is not holomorphic. Similarly, £2(1, R) holomorphic does not imply 
r(II(7V), R) = 0 for any N. This is obvious when R = Rv Less trivially, if S is 
immersed in E3 with K = 1, then £2(1, Rn) $ 0 is holomorphic, but T(II, Ru) s 
II does not vanish [5]. 

The proof of the theorem is elementary, using the Gauss equations [5, 
p. 160]. Some results which follow from the theorem are stated below for the 
special case n = 3. Full details and proofs will appear elsewhere. Hereafter, 
ƒ : S —>M3 is an immersion with fundamental forms I and II, mean curvature //, 
Gauss curvature K and intrinsic curvature KQ). Denote by K the sectional curva­
ture of M3 for planes tangent to 5, by A = #1 + MI any positive definite linear 
combination with real valued coefficients g and h, by R the Riemann surface 
determined on S by ds2 and by R an arbitrary Riemann surface on S. The form 
II' given by \Jm - K II' = MI - Kl is positive definite wherever K < 0 [10]. 
Lemmas 1 and 2 reflect the separate effects of the conditions £2(1, R) holomor­
phic and r(II, R) = 0. Theorem 2 includes a correction of the Corollary to 
Theorem 2 in [7]. 

LEMMA 1. If £2 = £2(1, R) * 0 is holomorphic, then except at isolated 
points where £2 = 0, there exists a cannonically determined function F> 0 on 
S which is R-superharmonic where K(l) > 0 and R-subharmonic where K(l) < 
0 [ l ,p . 135]. 

LEMMA 2. If T(II, R) = 0 for any one R on S, then K<0(so that KQ) 
< K), and H=0 wherever K = 0. 

THEOREM 1. Iff: S —> M3 is harmonic with ds2 = A, then either A « I, 
or else (except at isolated points where A a I) A « II'. 
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THEOREM 2. Iff: S —* M3 is harmonic with ds2 = II', H never zero and 
0 * K(l) < 0, then H'/H is not bounded. 

THEOREM 3. Iff: S —• M3 is harmonic with ds2 = II' complete, \K/H\ 
bounded and K(ll') < 0 then K(lï) = 0. 

THEOREM 4. Iff: S —+M3 is harmonic with R parabolic [1, p. 209], I 
nowhere proportional to ds2 and K(l) > 0, then K(I) = 0. 
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