A CHARACTERIZATION OF HARMONIC IMMERSIONS OF SURFACES

BY TILLA KLOTZ MILNOR

Communicated by J. A. Wolf, January 3, 1977

Let S be an oriented surface with Riemannian metric ds^2 , and M^n a Riemannian manifold of dimension $n \ge 2$. We present here a characterization of harmonic immersions $f: S \longrightarrow M^n$ which sheds some light on their differential geometric properties. While C^{∞} smoothness is assumed throughout, less is needed.

To work on the Riemann surface determined by ds^2 on S, use conformal parameters $z=x_1+ix_2$ which correspond to ds^2 -isothermal coordinates x_1,x_2 on S. Given any local coordinates on M^n , write $f=(f^\alpha)$ and $f_i^\alpha=\partial f^\alpha/\partial x_i$ where i=1,2 and $\alpha,\beta,\gamma=1,2,\ldots,n$. An immersion $f\colon S\longrightarrow M^n$ is harmonic if and only if for each α and for any ds^2 -isothermal coordinates x_1,x_2 on S

$$\partial^2 f^{\alpha}/\partial x_i^2 + \Gamma_{\beta\gamma}^{\alpha} f_i^{\beta} f_i^{\gamma} = 0,$$

where $\Gamma^{\alpha}_{\beta\gamma}$ are the Christoffel symbols for the metric on M^n , and one sums on the indices β , γ and i.

To any real quadratic form $X = l_{ij}dx_idx_j$ on S, associate on R the quadratic differential $\Omega(X,R)$ and the conformal metric $\Gamma(X,R)$ given by $4\Omega(X,R)$ = $(l_{11}-l_{22}-2il_{12})dz^2$ and $2\Gamma(X,R)=(l_{11}+l_{22})dzd\overline{z}$ respectively. Thus X=2 Re $\Omega+^3\Gamma$ on R. (See [10].) Call $\Omega(X,R)$ holomorphic if and only if the coefficient of dz^2 is complex analytic in z for every conformal parameter z on R. An immersion $f\colon S\longrightarrow M^n$ yields many quadratic forms of interest, among them the induced metric I, and the second fundamental forms II(N) determined by choices of a unit normal vector field N.

DEFINITION. An immersion $f: S \longrightarrow M^n$ is *R-minimal* if and only if $\Omega(I, R)$ is holomorphic, and $\Gamma(II(N), R) \equiv 0$ for any choice (local or global) of a unit normal vector field N.

An R-minimal immersion is *minimal* if and only if R is the Riemann surface R_I determined on S by I. It is known that a conformal immersion $f: S \longrightarrow M^n$ is harmonic if and only if it is minimal. Indeed, this is established in [2] independent of the dimensions of S and M^n . By analogy, we have the following

AMS (MOS) subject classifications (1970). Primary 53B25, 53C40.

Copyright © 1977, American Mathematical Society

THEOREM. An immersion $f: S \longrightarrow M^n$ is harmonic if and only if it is R-minimal.

This result is known for maps $f: S \longrightarrow M^2$. (See [4] for references.) It is also known that $\Omega(I,R)$ must be holomorphic for any harmonic map $f: S \longrightarrow M^n$, so that the only harmonic maps of the 2-sphere must be minimal ([2] and [8]). We consider immersions here to provide (when $n \ge 3$) a well-defined (n-2)-dimensional normal space everywhere.

Note that $\Gamma(\mathrm{II}(N),R)\equiv 0$ for all N means that the trace of $\mathrm{II}(N)$ with respect to ds^2 vanishes for all N. When $ds^2 \propto I$, this condition alone forces a minimal immersion, for it says that the mean curvature vector [11, p. 13] vanishes. Indeed, by our Theorem, the "mean curvature vector" formed with ds^2 in place of I vanishes for any harmonic immersion $f\colon S \longrightarrow M^n$. The converse can fail when $R \neq R_I$. For example, if S is immersed in E^3 with Gauss curvature $K \equiv -1$, the usual asymptotic Tchebychev coordinates [9, p. 528] are II'-isothermal, where $\sqrt{H^2+1}$ II' = HII + I, with H mean curvature. Here $\Gamma(\mathrm{II},R_{\mathrm{II'}})\equiv 0$ but $\Omega(I,R_{\mathrm{II'}})$ is not holomorphic. Similarly, $\Omega(I,R)$ holomorphic does not imply $\Gamma(\mathrm{II}(N),R)\equiv 0$ for any N. This is obvious when $R=R_I$. Less trivially, if S is immersed in E^3 with $K\equiv 1$, then $\Omega(I,R_{\mathrm{II}})\equiv 0$ is holomorphic, but $\Gamma(\mathrm{II},R_{\mathrm{II}})\equiv \mathrm{II}$ does not vanish [5].

The proof of the theorem is elementary, using the Gauss equations [5, p. 160]. Some results which follow from the theorem are stated below for the special case n=3. Full details and proofs will appear elsewhere. Hereafter, $f: S \longrightarrow M^3$ is an immersion with fundamental forms I and II, mean curvature H, Gauss curvature K and intrinsic curvature K(I). Denote by K the sectional curvature of M^3 for planes tangent to S, by $\Lambda = gI + hII$ any positive definite linear combination with real valued coefficients g and h, by R the Riemann surface determined on S by ds^2 and by R an arbitrary Riemann surface on S. The form II' given by $\sqrt{H^2 - K}$ II' = HII - KI is positive definite wherever K < 0 [10]. Lemmas 1 and 2 reflect the separate effects of the conditions $\Omega(I, R)$ holomorphic and $\Gamma(II, R) \equiv 0$. Theorem 2 includes a correction of the Corollary to Theorem 2 in [7].

LEMMA 1. If $\Omega = \Omega(I, R) \neq 0$ is holomorphic, then except at isolated points where $\Omega = 0$, there exists a cannonically determined function F > 0 on S which is R-superharmonic where $K(I) \geq 0$ and R-subharmonic where $K(I) \leq 0$ [1, p. 135].

LEMMA 2. If $\Gamma(II, R) \equiv 0$ for any one R on S, then $K \leq 0$ (so that $K(I) \leq K$), and H = 0 wherever K = 0.

THEOREM 1. If $f: S \to M^3$ is harmonic with $ds^2 = \Lambda$, then either $\Lambda \propto I$, or else (except at isolated points where $\Lambda \propto I$) $\Lambda \propto II'$.

THEOREM 2. If $f: S \to M^3$ is harmonic with $ds^2 = II'$, H never zero and $0 \neq K(I) \leq 0$, then H'/H is not bounded.

THEOREM 3. If $f: S \to M^3$ is harmonic with $ds^2 = II'$ complete, |K/H| bounded and $K(II') \le 0$ then $K(II') \equiv 0$.

THEOREM 4. If $f: S \to M^3$ is harmonic with R parabolic [1, p. 209], I nowhere proportional to ds^2 and $K(I) \ge 0$, then $K(I) \equiv 0$.

REFERENCES

- 1. L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, Princeton, N. J., 1960. MR 22 #5729.
- 2. S. S. Chern and S. I. Goldberg, On the volume decreasing property of a class of real harmonic mappings, Amer. J. Math. 97 (1975), 133-147. MR 51 #4102.
- 3. J. Eells, Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. MR 29 #1603.
- 4. J. Eells and J. C. Wood, Restrictions on harmonic maps of surfaces, Topology 15 (1976), 263-266.
- 5. L. P. Eisenhart, Riemannian geometry, Princeton Univ. Press, Princeton, N. J., 1926.
- 6. T. Klotz, Some uses of the second conformal structure on strictly convex surfaces, Proc. Amer. Math. Soc. 14 (1963), 793-799. MR 27 #2917.
- 7. ———, Surfaces harmonically immersed in E³, Pacific J. Math. 21 (1967), 79—87. MR 38 #646.
- 8. L. Lemaire, Applications harmoniques de surfaces Riemanniennes, Math. Inst. Univ. Warwick, 1975 (preprint).
- 9. T. K. Milnor, Efimov's theorem about complete immersed surfaces of negative curvature, Advances in Math. 8 (1972), 474-543. MR 46 #835.
- 10. ———, Restrictions on the curvatures of Φ-bounded surfaces, J. Differential Geometry 11 (1976), 31-46.
- 11. R. Osserman, A survey of minimal surfaces, Van Nostrand Reinhold, New York, 1969. MR 41 #934.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903