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consisting of modification of some of those already mentioned, are briefly 
stated with citation of references. Chapter 1 ends with an interesting discus
sion of criteria for the comparison of different algorithms. 

The statement of the translation editor that this is the only book in English 
which deals extensively with the approximate solution of integral equations 
(with Cauchy kernels) may still be true. At least this reviewer could find no 
other. However, for the case of convolution equations there is the excellent 
and extensive work by Gohberg and Fel'dman [7], which forms an effective 
complement to the present book, since the approach and the methods in the 
two monographs are quite distinct for the most part. 

One feature of the book which aids the reader is to set off passages which 
can be omitted on a first reading or are suitable "for a reader with an 
advanced mathematical training", by a vertical line within the margin of the 
text. The book is "closely written", in the sense of the theorem-proof style, 
sometimes proceeding without clear motivation from the readers point of 
view. However this style has the advantage of the presentation of a large 
amount of material in a short compass, and of clearly setting out what is 
known and not known. For a book on numerical analysis there are remark
ably few numbers included. The only example noticed where any details of 
calculation were cited was the computer solution of the system which arose in 
dispersion theory (p.263) 
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The methods taught in the standard basic statistics course assume that the 
observations come from a normal (Gaussian) distribution. Students are taught 
that the best estimate of the average or typical value of a population is the 
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average (mean) of a sample. In some applications, however, the median 
describes the typical member of a population more accurately than the mean. 
For example, in summarizing the income level of a town, a few rich families 
have a far greater effect on the value of the mean than they do on the 
median. 

Practical statisticians have long noticed that a few extremely deviant 
observations sometimes occur even in samples from populations which look 
"nearly normal" and that these observations have an unduly large impact on 
classical statistical analyses. Professor Tukey's 1961 article [11] stimulated a 
great deal of research in the development of robust statistical estimators and 
tests which are relatively unaffected by deviations from the usual assumptions 
underlying statistical methods. Nonparametric tests are the most robust of all 
procedures, as they are valid for samples from any population. Rank tests, the 
class of nonparametric methods discussed by Professor Lehmann, are also of 
interest because every rank test generates a unique estimator which is often 
robust. 

Rather than attempt to summarize the entire text, let us concentrate on the 
"two-sample problem" which arises in testing whether two populations differ 
or are essentially the same. For example, suppose one is interested in deciding 
whether two groups (e.g., white and Mexican Americans) have the same 
distribution of heights. Thus, we are testing that the height distribution of 
Mexicans G(x) equals that of the whites F(x). As an alternative one might 
consider G(x) = F(x — A), i.e., the height distribution of whites is shifted to 
the right, i.e., for any fixed height, h, the proportion of Mexicans (x's) who 
are less than h is greater than the proportion of whites ( y 's) who are less than 
h. In addition, we are interested in estimating the size of the shift A required 
to make the distributions identical. 

To resolve the issue, we take random samples xv . . . , xm from the first 
group and yv . . . ,yn from the second. Consider the combined sample of 
N = m + n observations. Under the null hypothesis that the two distribu
tions are the same, i.e., F(x) = G(x), it can be shown that each of the 
original observations has probability l/N of being the A;th largest in the 
pooled sample. Thus, the ranks in the combined sample that the n y 's will 
have, can be considered as a random sample of n integers chosen from 
1 , . . . , N, irrespective of the form of the distribution function F(x). Any test 
which is solely a function of the ranks that one group of observations has in 
the combined sample is called a rank test. If we let Rt be the rankj^. has in the 
ordered combined sample of N, then the Wilcoxon test is defined as W = 
2/?,., and its distribution is that of the sum of n randomly selected integers 
from 1,2,..., TV. Since the average of the first N integers is (N + l)/2, under 
the null hypothesis the expected value of W is n{N + l)/2. If the actual value 
of W is much larger than that, statisticians reject the hypothesis that the x9s 
and y's have the same distribution in favor of the alternative and conclude 
that the distribution of the y9s is shifted to the right, i.e., A > 0. From the 
distribution of W we compute the probability of obtaining a value at least as 
distant from its expected value as the one actually obtained. Usually when 
this significance probability level is less than 5% we reject the null hypothesis. 
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At this juncture probability theory is required to calculate the exact 
distribution of the statistic W and show that in large samples it is approxi
mately normally distributed. Under the null hypothesis the ranks of the y'$ 
are a random sample from 1, • . . , N. Thus, they are negatively correlated 
and the ordinary Central Limit Theorem does not apply. Lehmann's appen
dix provides an elegant treatment of asymptotic normality based on Hajek's 
approach to samples from finite populations. Fortunately, the asymptotic 
approximation to the distribution of rank statistics is quite accurate even in 
relatively small samples (m,n > 10). 

So far we have limited our attention to insuring that the probability of 
rejecting the hypothesis that both populations are the same when it is indeed 
true, is small (5% or less). The strength of nonparametric statistics is that this 
calculation is the same regardless of the form of the density function of the 
population. On the other hand, we also desire to reject the null hypothesis 
when the two populations truly differ. If c is the critical point of a test of size 
a (often .05), i.e., the probability, when the null hypothesis is true, of 
obtaining a value > c, is < a, written P0[ W > c] < a, then the power of the 
test is the probability of [ W > c] calculated under the alternative assumption 
(e.g., A = 1). While the size (a) of the Wilcoxon and all rank tests does not 
depend on the form of the underlying density function, their power does. The 
remarkable fact about the Wilcoxon test is that it is about 95% as powerful as 
the usual /-test for normal data. Hence, one pays a rather small price in terms 
of loss of power for guaranteeing that the Type I error (size) is not affected by 
the form of the density. 

By now the reader is probably asking if can we develop a test that is as 
powerful as the /-test on normal data and still has the property that its size 
(a) is unaffected by the shape of the density. For practical purposes the 
answer is yes, although the result is strictly true only for large samples. The 
idea is to use statistics of the form 2a(/?,), where /?, is the rank of yt and 
a(Rj) is specified by a(Rt/(N + 1)), where a(u) is a function on (0,1). The 
fundamental result, due to Chernoff and Savage [2] is the following: 

Let xv . . . , xm ;yx,... ,yn be two independent samples from the distribu
tions F(x) and G(x) = F(x - A), respectively, and assume that ƒ = F' has 
finite Fisher information, i.e., I - f(f'/f)2fdx < oo. The asymptotically 
most powerful rank test of H0: A = 0 against A ¥* 0 is based on the function 

(1) a{u) - ƒ -V2ƒ[ /? - ! (u)]/f[F~l («)], 0 < u< 1, 

and is asymptotically as powerful as the best parametric (maximum likeli
hood) procedure. When the population sampled is the logistic, 

/ ( * ) - e - 7 ( l + * - * ) 2 , 
then the function a(u) = 2V3 (w - ^) is a straight line which corresponds to 
the Wilcoxon test normalized to have mean 0 and variance 1. Since the 
functional form of the logistic density is similar to the normal, it is not 
surprising that the rank test which is best for the logistic is quite powerful on 
normal data. 

Mathematicians looking at formula (1) will notice that the functions a(u) 
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are in L2(0,1) and realize that there should be a connection between the inner 
product fax(u)a2(u) du and the closeness of the two densities ƒXJ2 generating 
the test scores ax and a2. 

The connection arises from the consideration of Pitman efficiency, a 
criterion enabling us to compare tests for large samples. A special criterion is 
needed here because almost any reasonable test will have power approaching 
1 as the sample sizes (m,n) increase. The idea underlying Pitman efficiency is 
to consider testing H0: A = 0 against a sequence of alternatives Hx: 
A = 8/ViV . In this case the power will not approach 1 as N increases, 
because the difference between the null and alternative hypotheses will 
decrease as N increases. It can be shown that the limiting power of a test Tx 

(based on ax) is given by 

(2) $(cx8 - ua) 

where $(— ua) = a the level of the test. Notice that the larger cx is, the more 
powerful the test is. The constant cx is called the efficacy of the test and the 
Pitman efficiency of a test Tx relative to another test T2 is 

(3) e{TvT2) = {cx/c2f. 

The quantity e(Tx,T2) can also be interpreted as the limiting ratio of the 
sample sizes required by the tests Tx and T2 to achieve the same limiting 
power 77 against the same sequence of alternatives. For example, if the Pitman 
efficiency of test Tx relative to T2 (e(Tx,T2)) = | , then the test T2 results 
require approximately half as many observations as the test Tx to achieve the 
same large sample power for critical regions of the same size a. Besides its 
statistical interpretations, the Pitman efficiency can be computed readily. It 
can be shown that the efficiency of test Tx (based on ax(u)) relative to the best 
test, T2, on data from the density f2 is given by 

(4) Oi>02> = Jai(u)a2(u) du> 

where a2 is obtained from (1). By the symmetry of the inner product T2 has 
this same efficiency relative to the best test, Tx, for data from the density fx. 

The fact that the functions a(u) generating the most powerful rank tests for 
a wide family of densities are in L2(0,1) yields insight into other problems as 
well. If one truly knew the form of the density, it would not make sense to use 
a rank test instead of the usual maximum likelihood test. Suppose one knew 
something about the density, e.g., it was either ƒ, or f2 (normal or double 
exponential): Is there a reasonably powerful rank test for this problem? 
Considering the functions ax, a2 as vectors in L2(0,1), it is clear that a test 
corresponding to the angle bisector will maximize the minimum efficiency 
when data comes from either density. This problem is discussed in [1] and [6]. 
Again statisticians lose relatively little power against either density when they 
insure that the rank test is reasonably powerful for samples from a family of 
densities. 

Another problem arises when data is censored or missing. This often occurs 
in reliability and clinical trials when we observe lifetimes (survivors) over time 
and must end the experiment early. Essentially the data allows us only to 
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order the JC'S whose value was less than t and to know that m — mx x's were 
greater than t. Similarly, we have the ordered yx, . . , ,yk (k = n — nx) and 
the knowledge that n — nx y's were greater than t. Thus all the n + m — mx 

— nx observations can be considered as missing or tied. If the test based on 
a(u) is appropriate for complete samples we desire the closest L2 approxi
mation to it which is constant on (1 - r,l) where r = (rnx + nx)/(m + n% the 
proportion of observations which are larger than t. That approximation [5], 
[10] is clearly the function equaling a(u) on (0,1 - r) and the average 
(1 - r)~xj\_ra(u) du on (1 - r,l). Thus, we score the ranks of the true 
observations with the same scores we would use in the complete data 
situation and score the censored observations by their "average rank." 
Although this formula is derived from asymptotic theory, the result agrees 
with common sense and yields tests whose statistical properties are close to 
the special small sample optimal procedures that have been derived in the 
literature. 

Mathematicians realize that Pitman efficiency is only one of several ap
proximations that can be used to compare the power of tests in large samples. 
Cochran considered the rate at which the level (rejection probability under 
H0) decreases to zero when the alternative is a fixed distance from the null 
hypothesis and the power is also fixed (< 1). A different formulation which 
often yields equivalent results is due to Bahadur. Recently Hàjek [7] showed 
that in terms of Bahadur efficiency, rank tests are as powerful as any function 
of the observations against a fixed alternative. Formally, consider the null 
hypothesis H0: F = G. The statistic \p(xx, . . . , xm, yx, . . . ,yn) which rejects 
HQ when its value is > \p0 has level 

L(^0) = Po[WXl> -->Xm>yi>--->yn)> * o ] -

The Bahadur efficiency is essentially the rate at which the observed level 
tends to zero at a fixed alternative. For example, consider a fixed alternative 
F = F*, A = A* (e.g., P* = N(0,1), G = N(A,1), A > 0). Bahadur showed 
that for almost all sample sequences N~llog L(\p(xx, . . . , xn;yv . . . ,ym)) 
tends to a limit, —K(\p). The larger K(\p) the faster the level (calculated 
under the alternative) approaches zero. Since smaller levels lead to rejection 
of the null hypothesis, this shows that tests with large values of K are better. 
Hajek showed that the Max K(\p) over all tests \p of H0 against any specific 
alternative, HA{F*,G*\ is achieved by a rank test of the form 2tf(/?,). Thus, 
no power is lost asymptotically by restricting attention to rank tests. 

While the book briefly discusses some of the alternative notions of 
efficiency and refers to the recent work of Bickel, the reviewer would have 
appreciated both a more comprehensive analysis of when and why they give 
the same or different results and Professor Lehmann's expert opinion as to 
which notion of efficiency is most appropriate to each problem treated. In 
particular, Rubin and Sethuraman [9] developed the concept of Bayes risk 
efficiency which often agrees with Pitman's notion. In view of the "heated 
discussion" between Bayesians and non-Bayesians [3] in the literature on the 
foundations of statistics, even a short section by Professor Lehmann could 
aid in converting the "heat" to light. 

So far our discussion has focused on a somewhat artificial problem, namely 
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testing the hypothesis that the two populations underlying our samples are 
identical. In the real world the problem of interest is how to estimate the shift 
(difference), A. Statisticians have shown that for every rank test there is a 
corresponding estimator, A, and its efficiency relative to the best parametric 
estimator is the same as the Pitman efficiency of the test to the a.m.p.r.t. 
Since the fundamental paper in this area is a joint work of the author [8], it is 
not surprising that the sections on estimating the treatment effect, illustrated 
by estimates derived from the Wilcoxon test, are both clear and comprehen
sive. 

Due to space limitations we have illustrated the fundamental notions of 
nonparametric inference on just one problem. The text covers a much wider 
class of situations in which rank tests have been used, including paired 
comparisons (used in matching studies), the comparison of several treatments 
and randomized complete blocks. This last topic is quite important in 
biological research as it provides a method for dividing the population into 
homogeneous subgroups and testing to see if there is a treatment effect across 
all subgroups. These methods take advantage of the fact that "background" 
variation within each subgroup is normally much smaller than the variation 
in the entire population. 

The mathematician reading the text will be exposed both to a wide variety 
of applications of nonparametric methods and to the probabilistic tools which 
underly the theory. Indeed, the mathematical appendix (approximately 80 
pages long) is superb. Although the book discusses a variety of real problems, 
from a practical statistician's viewpoint it spends too much time on the 
problem of ties (observations with the same value) and not enough time on 
"heuristic" or common sense methods. For example, in the discussion of 
testing whether a sequence of numbers is a sample from the same distribution 
or has an increasing trend, i.e., the mean of the x/s increases with i, the 
standard test due to Mann is discussed. If one draws a picture of samples 
coming from both the null and alternative hypotheses, one notices that their 
major difference is highlighted at the ends. This suggests that a reasonably 
powerful test might be developed by considering the lowest third of the 
observations as x9s and the upper third as >>'s and testing whether the y 's are 
larger than the x9s. In the reviewer's opinion it is unfortunate that students 
generally are not taught the reasoning behind this type of "quick" and 
relatively efficient statistical procedure [4]. 

In summary, Professor Lehmann's text will undoubtedly become the stan
dard to which other mathematical introductions to nonparametric inference 
will be compared. It has an excellent selection of problems, ranging from 
routine calculations to challenging problems for the best students, and an 
extensive bibliography. Although students may not find the book particularly 
easy to read, Professor Lehmann has provided a very well organized guide to 
the field of rank tests. Mathematically inclined students should be en
couraged to and able to pursue the study of Kolmogoroff-Smirnov and other 
"goodness of fit" tests which stimulated a significant amount of research in 
the properties of tied-down Wiener processes. The reviewer has no doubt that 
a student with initiative will learn a great deal about both the mathematical 
foundations and use of rank tests from this book. 
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Representations of real numbers by infinite series, Jânos Galambos, Lecture 
Notes in Math., vol. 502, Springer-Verlag, Berlin, Hiedelberg, New York, 
1976, vi + 146 pp., $7.40. 

During the last thirty years a large amount of research has been devoted to 
the study of various algorithms for the representation of real numbers by 
means of sequences of integers. In addition to the two "classical" algorithms, 
i.e. digit expansions and continued fractions, and to several types of addi
tional, slightly less well-known ones like Cantor, Lüroth, Engel and 
Oppenheim series, more general classes of such algorithms have been defined 
and investigated, particularly by F. Schweiger [6] and also by the author 
himself [3]. 

The book under review introduces the reader to some of the most im
portant features of these developments. The exposition is based on what the 
author calls an (a,y)-expansion y(x) of a real number x. For each y, two 
strictly decreasing sequences a.j{ri) and jj(n) of positive real numbers are 
given, satisfying the condition 

ctj(n - 1) ~ aj(n) < jj(n) (n = 2,3, . . . ). 

In order to define the algorithm for a given number x E (0,1], an auxiliary 
sequence dj(x) of integers is defined in such a way that the infinite series 

y(x) « ax(dx) + yi(dl)a2(d2) + yl{dl)yl(d2)a3(d3) + • • • 

is always convergent and has, under fairly general assumptions, the limit x. A 


