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modern phase. Most of the results he deals with are over twenty years old and 
many go back to the thirties and before. Nevertheless the continual process of 
understanding which has gone on over the years means that clear and concise 
accounts can now be given. 

After a brief introduction the basic notions are introduced in the first 
chapter (manifolds with boundary are given particular attention throughout). 
Function-spaces of smooth maps are dealt with next, with originality in the 
proof of the Baire property for the strong topology and in that of the 
Morse-Sard theorem on the set of regular values. Sheaf theory in disguise is 
used to formulate a "globalization theorem" relating the local and global, 
which is applied in showing that C-manifolds (r > 2) admit C °°-structure. 
Similar ideas are used elsewhere with great advantage, particularly in the 
proof of the transversality theorem which dominates the third chapter. Vector 
bundles are dealt with succinctly in the fourth chapter and numerical 
invariants-degree, intersection number, Euler characteristic-in the fifth. The 
sixth chapter deals with Morse theory and seventh with the basic notions of 
cobordism. The last two chapters are concerned with isotopy and the clas
sification of surfaces. 

On the whole this is a most readable book. The author has taken 
considerable trouble with the exposition and has improved on previous 
accounts in many ways. There are some good diagrams and plenty oi 
exercises. Unfortunately the text contains little in the way of worked exam
ples—the practise as distinct from the theory—and because of this I believe that 
many students may find these exercises discouragingly difficult. And what
ever may be said in the preface, the student is expected to know a little 
homotopy theory and to be acquainted with the Möbius band, the torus, 
Klein bottle and so forth. Lapses occur here and there; for instance some key 
definitions, such as homotopy, seem to have been forgotten and others, such as 
vector field, are treated very casually. One would prefer to see more 
illustrations of the various definitions which come in; for example, one feels 
that some examples of vector bundles should be discussed before plunging 
into the general theory. Hirsch's point of view is deliberately restricted by his 
reliance on certain types of argument-he seems to eschew anything algebraic, 
such as homology theory-and it would be an improvement if the bibliography 
included some of the other books in this general area which adopt a different 
stance. But all in all a most welcome addition to the literature. 
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The Hopf bifurcation and its applications, by J. E. Marsden and M. McCrac-
ken, Springer-Verlag, New York, 1976, xiii + 408 pp., $14.80. 

A classic example from mechanics should make clear what bifurcation 
from equilibrium of periodic solutions is. Consider a rigid circular hoop so 
constrained that it can rotate freely about the vertical axis through its center. 
Suppose a small ball rests at the bottom of the hoop and is constrained to 
move on the inside rim. Set the hoop to rotate with frequency <o (about the 
vertical axis through its center). For small values of co, the ball stays at the 
bottom of the hoop and that equilibrium position is stable. However, when co 
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is increased from 0 to the critical value coc = V g/R ( g is acceleration due to 
gravity, R is the radius of the hoop) and beyond, the ball rolls up the hoop to 
one of two new stable positions where 

cos 0 = g I (o)2R ). 

Here 9 is the angle that the radius to the ball makes with the negative 
vertical axis, the hoop's center being the origin. The position at the bottom of 
the hoop is still a fixed point, but it has become unstable; and, in practice, it 
is never observed to occur for <o > coc. Mathematically, we say that the 
original stable equilibrium has become unstable and has bifurcated into two 
stable fixed points, one on each side of the hoop, that both correspond to a 
single periodic orbit of the ball in R3. 

Hopf bifurcation refers to the growth of periodic orbits from a fixed 
equilibrium point of an autonomous differential system as a continuously 
changing parameter crosses a critical value. This terminology recognizes E. 
Hopf's contribution through his definitive 1942 paper [9] in which he crys-
talized and developed earlier ideas and extended them to the case of Rn 

(n > 2). In R2 these ideas had their origins in the work of A. A. Andronov 
and A. A. Witt1 [2], H. Poincaré [15] (Poincaré actually was interested in 
periodic solutions near to nonzero periodic solutions), and A. Lindstedt [13]. 
Hopf was modest to an extreme about his 1942 work, which has generated the 
research monograph under review: "However, I scarcely think that there is 
anything new in the above theorem." Indeed, Stokes' investigations of water 
waves in 1847 [18] led him to secular terms, and he found a method to 
eliminate them; in his proof Hopf also had secular terms to eliminate. Yet, 
despite its roots in earlier work, Hopf's 1942 paper was almost thirty years 
ahead of its time. For it was only in the last decade that the significance of his 
work was recognized. 

The book under review may be outdated already as to results, for the 
explosion of applied mathematical literature on Hopf bifurcation is great and 
continuing; but this monograph is at the fore with respect to fundamental 
ideas and methods. (It originated from notes of a 1973-74 seminar at 
Berkeley, and it contains sections and proofs contributed by many mathema
ticians.) In the book Hopf's theorem is generalized in various ways: to 
diffeomorphisms, to partial differential equations, and to situations where 
various of Hopf's original hypotheses are relaxed. It is also improved. For 
example, the proof by the center manifold theorem (in §3) establishes 
uniqueness of the family of bifurcating periodic orbits. Hopf's proof does not 
preclude existence of a sequence of periodic solutions xk(t, fjik) with max|x^(/, 
(jik)\ —> 0 as [ik —> /jtcrit, but with periods Tk —> oo as \ik -» ju,crit/ The center 
manifold theorem says that any point not on the center manifold must 
eventually leave a sufficiently small neighborhood of equilibrium (at least for 
a while) or tend to the center manifold as t-> oo. Thus the 2-dimensional 
center manifold contains all sufficiently small closed orbits, which implies 

^leksandr Adol'fovich Witt's coauthorship of the famous book by Andronov and Khaikin on 
nonlinear oscillations deserves to be widely known. This coauthorship was reported by Khaikin 
in his preface to the second (Soviet) edition (1959), where he wrote that Witt's name was omitted 
from the title page of the first edition in 1937 "by an unfortunate mistake". Witt died in 1937. 
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uniqueness. Also Hopf's 1942 paper did not provide an effective formula, foi 
use in applications, for determining the stability of the periodic orbits 
bifurcating from equilibrium. Marsden and McCracken fill this gap (in §§4 to 
4B), but their goal is wider: "To give a reasonably complete, although not 
exhaustive, discussion of what is commonly referred to as the Hopf 
bifurcation with applications." Their goal is solidly achieved. There is a 
wealth of examples presented which adds significantly to the readability and 
clarity of the text. These examples make the difference between the motivated 
and unmotivated, between pedestrian mathematics and stimulating, alive 
mathematics. 

The stability formula derived by Marsden and McCracken in §4, which 
tells if the bifurcating periodic solutions are asymptotically orbitally stable or 
not, is quite long; and its derivation is computationally inelegant and lengthy. 
Several derivations of this result and Hopf's theorem have appeared since 
1973. The best I know is due to Y. H. Wan (unpublished; see [8] for it and 
more). He has shortened the derivation significantly and has presented the 
stability formula and related quantities in a more compact notation. He does 
this with elegance by using Poincaré normal form and complex-variable 
notation. Following Wan's ideas, we now outline the content of Hopf's 
theorem in precise mathematical terms and the stability results derived from 
it. 

Consider the autonomous n X n (n > 2) system 

(*) x = A ( fi)x + ƒ (x, jit) 

with /(O, /x)=/c(0, jut) = 0 and such that (1) A has a pair of complex 
conjugate eigenvalues X(ft) = a (jit) + /oo(jLt) and A(ju) with a(0) = 0, <o(0) = 
co0 > 0, and a'(0) ¥= 0 and (2) for all jit in a neighborhood of 0 the remaining 
eigenvalues of A all have negative real parts. In this situation, under certain 
smoothness hypotheses, the improved assertion of Hopf's theorem is that 
there exists a unique family of small amplitude periodic solutions for values 
of JU, near 0 in exactly one of the cases JU < 0, jix = 0, \x > 0. Moreover, there 
exist functions ju(e), r(e), and /?(e) defined for all sufficiently small positive e 
such that (1) jbt(0) = r(0) = /?(0) = 0, (2) for each such e, (*) has a unique 
small amplitude periodic solution of period 

r = 277[l + T(e)]/co0, 

and (3) the nonvanishing characteristic multiplier, with largest real part 
(among all the characteristic multipliers of the full system), associated with 
this solution is /?(e). In Wan's notation the 2 x 2 system, obtained by 
applying the center manifold theorem to the given n X n system (*) if n > 2, 
is of the form 

i = X(ix)z + g(z, z), 

where z = y, + iy2 (yi real). He then puts this system in Poincaré normal 
form: 

k - X(/0€ + c,(M)€2€+c2(/i)€3€2 + e(|*|7), 
£ a complex variable. Wan has shown that if A and ƒ are smooth enough 
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i - 2 / * 2 /~2 

where 

/?2 = 2 Re c,(0), ju2 - - & / (2a'(0)), T2 - - [im cx(0) + ^ ( 0 ) ] / « o -

If e is sufficiently small and /?2 7
e 0, then sign pt2 determines the direction of 

bifurcation and sign fi2 determines the stability of the periodic solutions. 
They are asymptotically orbitally stable, with asymptotic phase, if )S2 < 0. B. 
D. Hassard and Wan [8] have shown that /x3 == /?3 = r3 = 0, and that 

a'(0)M4 - - R e c2(0) - 2 Re c[(0)ii2 - a"(0)/xf/2, 

04 = 4 Re c2(0) + 2 Re c', (0) jut2, 

and 

CO0T4 = - I m c2(0) + (o0r2 - <o'(0)/jt4 - Im c\(0)ix2 - <o"(0)ju2/2. 

Indeed, it is shown in §3B (for fik and /3k) and in [8] that, given enough 
differentiability, [ik = rk = flk = 0 for all odd /c. 

§3A contains a brief discussion of N. Chafee's theorem [4] which tells how 
(if a'(0) = 0) uniqueness of the family of bifurcating closed orbits, whose 
existence is asserted by Hopf's theorem, is lost. Chafee only assumes that A 
and ƒ are continuous in fx and ƒ is uniformly Lipschitzian in x with respect 
to JU, with Lipschitz constant k(x) -» 0 as \x\ —>. 0. 

Hopf's theorem is reproved in §3C under the assumption that no "other" 
eigenvalues of A (0) are integral multiples of /<o0 and also in the exceptional 
case a'(0) = 0 but a"(0) =£ 0 (cf. Hassard and Wan [8]). Actually, the two 
families of periodic solutions derived there (in the a'(0) = 0, a"(0) ^ 0 case) 
are one and the same set of periodic orbits. 

The most interesting example discussed by Marsden and McCracken is that 
of the Lorenz equations [14] which model, in an idealized way, turbulence in 
the atmosphere. These equations are 

x = o(y — x)i 

(**) y = rx — y — xz, 
z = — bz 4- xy. 

Here a = v/K is the Prandtl number, K is the coefficient of thermal 
expansion, v is the viscosity, and r, the Rayleigh number, is the bifurcation 
parameter. Lorenz [14] writes that " . . . x is proportional to the intensity of 
the convective motions, while y is proportional to the temperature difference 
between the ascending and descending currents, similar signs of x and y 
denoting that warm fluid is rising and cold fluid is descending. The variable z 
is proportional to the distortion of the velocity profile from linearity, a 
positive value indicating that the strongest gradients occur near the 
boundaries." 

At first, and even at second, glance there appears to be nothing remarkable 
about the system (**). Who among us would have imagined that this 
seemingly simple autonomous nonlinear system could be associated with 
Cantor sets? Such pathology in the phase portrait of a 3 X 3 autonomous 
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system with polynomial right-hand sides almost defies imagination. Yet, this 
is actually the case; numerical studies show that the Lorenz equations provide 
an example of a new object, a strange attractor, the subject of much current 
study. Parts of a strange attractor are locally 

(a Cantor set) X (a disc). 

What is also noteworthy is that E. Hopfs goal in 1942 was to give a 
mathematical theory of turbulence and that Lorenz's equations exhibit Hopf 
bifurcation. 

Marsden and McCracken applied the Hopf theorem and their stability 
formula to (**). The stability criterion they obtained was programmed on a 
computer, yielding regions of stability and instability in the (b, a)-plane. 
Their picture shows that if bifurcation to unstable periodic solutions occurs 
for r < rcrit about a stable equilibrium, then for r > fcrit.the Lorenz attractor 
(strictly speaking, invariant set) appears about unstable equilibrium. 

In the last half of the book the authors take up the theme provided by their 
earlier study of Lorenz's equations in earnest. They first remark that Hopfs 
method has been pushed through for partial differential equations, "provided 
the equations are of a certain 'parabolic' type. This was done by Judovich [2], 
Iooss [10], and Joseph and Sattinger, [11] and others. In particular, the 
methods do apply to the Navier-Stokes equations. The result is that if the 
spectral conditions of Hopfs theorem are fulfilled, then indeed a periodic 
solution will develop, and, moreover, the stability analysis given earlier 
applies. The crucial hypothesis needed in this method is analyticity of the 
solution in /. Here we wish to outline a different method for obtaining results 
of this type . . . instead of utilizing smoothness of the generating vector field, 
or /-analyticity of the solution, we make use of smoothness of the flow. ..." 
In the end, this approach of the authors depends on a "remarkable property 
of smooth semiflows" [3], which is proved in §8A: "this is that the semiflow Ft 

is generated by a C00 vector field on the finite dimensional center manifold 
C; i.e. the original X[x = X(x, /x)] restricts to a C00 vector field (defined at 
all points) on C. This trick reduces us to the Hopf theorem in two 
dimensions. ..." 

§§8-9B contain the real meat of the applications portion of the book: 
applications to problems for the Navier-Stokes equations. Many of the results 
are not new (D. Ruelle and F. Takens in their fundamental paper [16] gave a 
simple proof of W. Velte's results [19] on stationary bifurcation in the flow 
between rotating cylinders from Couette flow to Taylor cells). But new results 
are presented, including results on existence, smoothness, and uniqueness. 
About turbulence the authors make the following interesting remarks: "If the 
attracting set of the flow, in the space of vector fields which is generated by 
the Navier-Stokes equations is strange, then a solution attracted to this set 
will clearly behave in a complicated, turbulent manner. While the whole set is 
stable, individual points in it are not. Thus an attracted orbit is constantly 
near unstable (nearly periodic) solutions and gets shifted about the attractor 
in an aimless manner. . . . " In summary the authors' view of turbulence is: 
"Our solutions for small /x ( = Reynolds number in many fluid problems) are 
stable and as ii increases, these solutions become unstable at certain critical 
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values of /x and the solution falls to a more complicated stable solution; 
eventually, after a certain (finite) number of such bifurcations, the solution 
falls to a strange attractor (in the space of all time dependent solutions to the 
problem). Such a solution, which is wandering close to a strange attractor, is 
called turbulent. The fall to a strange attractor may occur after a Hopf 
bifurcation to an oscillatory solution and then to invariant tori, or may 
appear by some other mechanism, such as in the Lorenz equations as 
explained above ('snap through turbulence')." 

The authors state two conjectures and two major open problems: "1 . In the 
Ruelle-Takens picture, global regularity for all initial data is not an a priori 
necessity; the basins of the attractors will determine which solutions are 
regular and will guarantee regularity for turbulent solutions (which is what 
most people now believe is the case). 2. Global regularity if true in general, 
will probably never be proved by making estimates on the equations. One 
needs to examine in much more depth the attracting sets in the infinite 
dimensional dynamical system of the Navier-Stokes equations and to obtain 
the a priori estimates this way. (i) Identify a strange attractor in a specific 
flow of the Navier-Stokes equations (e.g. pipe flow, flow behind a cylinder, 
etc.). (ii) Link up the ergodic theory on the strange attractor with the 
statistical theory of turbulence." 

In connection with (ii) R. Williams [20] has shown that strange attractors 
come in uncountably many topological types. Thus there is the further 
difficulty: does one need a statistical mechanics for each type? We note that 
no one has proved, as of this writing, that any faithful model of a natural 
system possesses the strange attractor property for some particular open set of 
numerical coefficients. 

There are important contributions to bifurcation theory (not necessarily 
Hopf bifurcation) that are not described in detail in these notes. Not 
everything in this large field could be included. One prominent example is the 
paper of M. Crandall and P. Rabinowitz [5]. Another exposition is by D. H. 
Sattinger [17]. There have been numerous successful applications of the Hopf 
theorem and stability results to biological problems in the last few years. 

Important problems remain to be solved. How do bifurcating solutions of 
particular systems behave in the large as the bifurcation parameter moves 
away from its critical value, and what is their stability? J. Alexander and J. 
York [1] have given a deep but partial answer: they give the theoretical 
possibilities but no method for deciding among them in concrete cases. B. D. 
Hassard [7] has numerically investigated this problem for the space-clamp 
case of the Hodgkin-Huxley equations, which describe propagation of signals 
along a squid's giant nerve axon. No successful method has been found for 
establishing the stability of large periodic solutions of natural systems, namely 
those faithfully modeling natural phenomena. Further study of the Poincaré 
map may be the key to resolving this question. Much remains to be done in 
investigating the connection between periodic and close to periodic solutions 
of partial differential equations and periodic solutions of corresponding 
systems of ordinary differential equations. A step in this direction has been 
taken by E. Conway, D. Hoff, and J. Smoller [6], who have proved for a wide 
class of nonlinear reaction-diffusion systems that solutions exist which decay 
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at an exponential rate in t to stable invariant sets of corresponding systems of 
ordinary differential equations, for example, to stable bifurcating orbits. 

This book should have a healthy influence on the course of bifurcation 
theory. The range of current applications of the theory is exceptionally large: 
fluid dynamics, atmospheric physics, buckling of materials, mathematical 
chemistry, biochemistry, biology and neurophysiology, chemical engineering, 
mathematical models of morphogenesis, population dynamics, and 
mathematics, which is surely not a complete list. One may expect that the 
sciences will strongly benefit, perhaps through a key advance, from 
applications of Hopf bifurcation and its generalizations and relatives. 
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