
34 BOOK REVIEWS 

aim of the subject is to determine values of characters in a block by using this 
connection. Each p-block B has associated to it a defect group D which is a 
subgroup of G of order a power of p and determined up to conjugacy. The 
remarkable results achieved in the case that D is cyclic constitute the high 
point of the theory and the motivation for much present research. Even more 
remarkable is the simple combinatorial idea which ties together all these 
results and all the characters, Brauer characters, decomposition numbers, 
Cartan invariants and modules in a very simple way: this is the Brauer tree 
which is a tree together with a planar embedding. 

This cyclic theory is the subject matter of the final chapter of the book. 
Wisely, in this introductory treatment, the authors restrict themselves to the 
case where a Sylow^-subgroup P of G is of order/?; thus, each/?-block has 
defect group of order one or p. Unfortunately, the Brauer tree is not 
introduced and the reader will not get a complete understanding of the 
theory. 

However, the results on characters are completely established. Recall that 
the character table of G is a matrix whose rows are indexed by the irreducible 
characters of G and whose columns are indexed by the conjugacy classes of 
G. The entry in the row of the character x and column of the conjugacy class 
K is the value x(&) of x on an element k of K. In our case, suppose that the 
characters of degree not divisible by p are listed first and followed by all the 
characters of degree divisible hyp. Similarly, list first the conjugacy classes of 
elements of order not divisible byp and then the ones of order divisible by/?. 
In this way we get a partition of the character table of G into four submatri-
ces. The main results are then as follows: the lower right submatrix is zero; 
the upper right submatrix, apart from some signs, is the same as the upper 
right submatrix of the character table of the subgroup N(P), the normalizer 
of the Sylow/7-subgroup P. This is a beautiful result, easy to understand and 
very useful in applications; but a whole theory is needed for its proof! 
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Applied nonstandard analysis, by Martin Davis, Wiley, New York, London, 
Sydney, Toronto, 1977, xii + 181 pp., $16.95. 

Introduction to the theory of infinitesimals, by K. D. Stroyan and W. A. J. 
Luxemburg, Academic Press, New York, San Francisco, London, 1976, 
xiii + 326 pp., $24.50. 

Foundations of infinitesimal calculus, by H. Jerome Keisler, Prindle, Weber & 
Schmidt, Boston, 1976, ix + 214 pp. 

Infinitesimal calculus used to be about infinitesimal numbers. A derivative 
was the quotient of two infinitesimals; an integral was the sum of infinitely 
many infinitesimals. Although discredited by the development of e — 8 
analysis in the nineteenth century, the notion of infinitesimals has never 
entirely disappeared. Physicists continue to draw little vectors and label them 
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dx (just as they used the Dirac delta function long before distributions were 
invented). I suspect that many mathematicians harbor, somewhere in the 
back of their minds, the formula f}/(dx)2 + (dy)2 for arc length (and quickly 
factor out dx before writing it down). And many students bring to their 
freshman calculus courses a preconception of the continuum that seems to 
include infinitesimals; several have told me that the sum of the geometric 
series 1 + \ + \ + . . . should be just below 2. 

Despite its intuitive appeal and its successes in various applications, the 
calculus of infinitesimals had serious foundational problems. For example, in 
the calculation of the derivative of x2, 

d(x2) (x + dx)2 - x2 

—-— = : = 2x + dx = 2x9 

dx dx 
dx is treated as zero at the end, but it cannot be treated as zero at the 
beginning. One thus needs nonzero infinitesimals, numbers which remain 
negligibly small even when multiplied by large real numbers. No such 
infinitesimals exist in the real line R, so one needs a proper extension of R, a 
rather radical idea, since R is almost universally accepted as the mathematical 
model of the continuum. Furthermore, one needs to be able to manipulate 
infinitesimals and other elements of the extension just like ordinary real 
numbers, but one cannot expect the extension to satisfy all the usual axioms 
for R (e.g., the Archimedean axiom), for that would make the extension equal 
toR. 

In the nineteenth century, it was discovered that there is no need to attack 
these difficulties. The e - Ô method provided definitions, purely in terms of 
real numbers, of concepts like the derivative and the integral and provided 
proofs of the classical theorems about these concepts. At the cost of an 
increase in complexity and perhaps a decrease in intuitive appeal, a rigorous 
foundation had been constructed for calculus (or, rather, for the part of 
calculus that did not refer to infinitesimals directly but only via derivatives, 
integrals, etc.). Infinitesimals were dismissed as fictions; anything one might 
want to say about them should either be replaced with an e-8 circumlocution 
or be judged meaningless. And the problem of creating a usable mathematical 
theory of the continuum that includes infinitesimals was put on the back 
burner (or into the freezer) while mathematical logicians (unknow
ingly) prepared the tools that would eventually lead to its solution. 

The development of a rigorous theory of infinitesimals requires a decision 
as to which properties of R shall remain true of the extension, usually called 
*R. The class of such properties must be broad enough to permit computing 
with infinitesimals as though they were real, but not so broad that they force 
*R to be just R. Abraham Robinson [13] discovered that the class of 
properties expressible by first-order sentences fulfills these requirements 
beautifully; this was the beginning of nonstandard analysis. 

A first-order sentence about a mathematical structure (like R) is a sentence 
built using variables (intended to range over the elements of the structure), 
names for the elements of the structure, symbols for «-place predicates (i.e., 
sets of «-tuples, for arbitrary finite n) and functions, propositional connec-
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tives (like "and" and "not"), and the quantifiers "for all" and "for some". The 
crucial point is that, since the variables range only over the structure at hand, 
a first-order sentence over R can express "for all real numbers . . . " but not 
"for all sets of real numbers . . . ". Thus, the axioms asserting that R is an 
ordered field are first-order, but the least upper bound axiom is not. The 
compactness theorem of model theory implies that every infinite structure has 
a proper extension that retains all first-order properties of the original 
structure. Applying this to R, Robinson obtained *R, the nonstandard real 
line. By transfer of first-order properties, *R is an ordered field, but it is not 
Dedekind-complete (a non-first-order property). All predicates and functions 
on R extend to *R and retain the same first-order properties, although a 
predicate will, in general, hold of some elements of *R - R in addition to 
those of which it holds in R. For example, the Archimedean property of R, 
Vx3y(N(y) and x < y) where N is the predicate of being a natural number, 
continues to hold in *R, even though *R, being a proper extension of R, is not 
Archimedean. There is no contradiction here, only a proof that the predicate 
TV holds in *R of some infinite numbers in addition to the ordinary natural 
numbers. That is, there are infinitely large natural numbers in *R. The 
natural numbers of *R are not well-ordered, for there is no smallest infinite 
one, but this should not be surprising since well-ordering is not a first-order 
property. 

Robinson also noticed some interesting phenomena that occur when one 
includes 9(R)9 the set of all subsets of R, in the structure to be extended. One 
obtains an extension *R u *<3)(R) in which the least upper bound axiom 
holds, for this axiom is first-order in the base structure R U 9(K). However, 
this only means that every nonempty bounded element of *<3)(R) has a 
supremum, where *<3)(R) need not be the set ^P(*R) of all subsets of *R. 
Thus, the meaning of the completeness axiom in the extension is weaker than 
one might at first expect, weak enough to permit *R to be a proper extension 
of R. Subsets of *R that are in *^P(R) are called internal; the rest are external. 
When sentences are transferred from the standard to the nonstandard 
universe, quantifiers ranging over sets become quantifiers ranging over inter
nal sets. Thus, nonempty bounded internal sets have suprema, and nonempty 
internal sets of natural numbers (in *R) have least elements. (We have tacitly 
assumed that *^P(R) consists of some subsets of *R; this can be arranged by 
replacing *R u *9(R) with an isomorphic copy. But note that this replace
ment will leave us with an embedding, rather than an inclusion, of ^(R) into 
*^P(R). This embedding is usually written *. For example, if Z is the set of 
integers, *Z is the set of integers of *R, including infinite integers.) 

One can extend the procedure in the previous paragraph by iterating the 
power set operation. Davis and Stroyan-Luxemburg (and Keisler in an 
optional chapter) begin with the "superstructure" 

R U 9(R) U 9(R U 9(R)) u . . . 

over R (or over some arbitrary set) and form a nonstandard extension of it. (A 
very similar approach was used by Robinson [14].) It is then possible to give a 
nonstandard treatment of analysis beyond elementary calculus. For example, 
the Hubert space L2[0, 1] is an element of the superstructure over R, and one 



BOOK REVIEWS 37 

can consider its nonstandard elements. However, as is shown in [13] and, in 
great detail, in Keisler's book (and the textbook [6]), the development of 
elementary calculus can be carried out comfortably using only *R. 

The basic concepts of calculus can be defined using *R along lines very 
close to (but not quite identical with) the old pre-e-8 definitions. For example 
the derivative dy/dx of a real function is not simply the quotient of infini
tesimal differences but rather its standard part, i.e., the real number that is 
infinitely close to it. (The difference quotient itself is generally in *R — R, 
e.g., 2x + dx when y = x2.) If no such real number exists (because the 
difference quotient is infinite) or if it depends on the choice of the infinitesi
mal dx, then the derivative does not exist. (Robinson showed that this 
definition agrees with the conventional e-S definition.) Similarly, a definite 
integral is the standard part of a certain infinite sum of infinitesimals, the 
number of summands being a nonstandard natural number. 

Not only does nonstandard analysis provide a rigorous treatment of infini
tesimals in the area of mathematics where they were originally used, it also 
gives elegant approaches to some ideas that developed later. For example, if 
A" is a topological space, there is a natural way to define what it means for a 
point of *X to be infinitely near a point of X; if A" is a metric (or merely 
uniform) space, one can define "infinitely near" even when both points are in 
*X — X. Then a topological space is Hausdorff if and only if no point of *X 
is infinitely near two distinct points of X. It is compact if and only if every 
point of *X is infinitely near some point of X. A map/: X -» Y is continuous 
at x G X if and only if for all y Œ *X infinitely near x, *f(y) is infinitely 
near ƒ (x). If X and Y are metric spaces, then ƒ is uniformly continuous if and 
only if for all points x,y G *X that are infinitely near each other, *ƒ(•*) *s 

infinitely near */(>0- Once such equivalences are proved (or accepted as 
definitions), there are trivial proofs of results like the uniform continuity of 
pointwise continuous functions on a compact metric space. Nonstandard 
equivalents are known for a great variety of standard concepts, especially in 
analysis and topology; many of them are given in the books under review, 
particularly Stroyan-Luxemburg. (It must be admitted that those quoted 
above were chosen for their elegance. Some of the others are less pleasant.) 

Often, as in the examples above, the nonstandard definition of a concept is 
simpler than the standard definition (both intuitively simpler and simpler in a 
technical sense, such as quantifiers over lower types or fewer alternations of 
quantifiers). As a result, nonstandard analysis sometimes makes it easier to 
find proofs. Also, by providing infinite objects, the nonstandard natural 
numbers, which behave like finite ones (by the transfer principle), nonstan
dard analysis sometimes allows one to apply finite results to an infinite 
situation. A classic example is the Bernstein-Robinson theorem [1] asserting 
that polynomially compact operators on Hubert space have nontrivial 
invariant subspaces. Although standard proofs of this theorem and stronger 
ones now exist, the original proof used nonstandard analysis to carry through 
the natural idea of applying the well-known existence of invariant subspaces 
in the finite-dimensional case. One applies it in the nonstandard universe to a 
Hilbert space whose dimension is a nonstandard natural number and which is 
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carefully chosen to approximate the original (infinite-dimensional standard) 
Hubert space. 

The relative simplicity of the nonstandard definitions of some concepts of 
elementary analysis suggests a pedagogical application in freshman calculus. 
One could make use of the students' intuitive ideas about infinitesimals 
(which are usually very vague, but so are their ideas about real numbers) to 
develop calculus on a nonstandard basis. The e-8 ideas would still be 
presented, both because they are important in problems of approximation 
and because students will need them in subsequent courses based on standard 
analysis, but these ideas, which students often find difficult, would not be 
used as a foundation on which everything else depends. This approach to 
freshman calculus is presented in [6], for which Keisler's book under review 
serves as a supplement for the instructor. Keisler has neatly circumvented the 
obvious difficulty-that the notion of first-order sentence, which is crucial in 
the usual development of nonstandard analysis, is inappropriate for freshman 
calculus. He observed that the uses of the transfer principle that are actually 
needed at this elementary level are all obtainable from the special case that he 
calls the solution axiom: if two finite systems of equations and inequalities 
(involving real constants and functions) have the same solutions in R, then 
they have the same solutions in *R. (Actually, as Keisler shows in the book 
under review, any instance of the transfer principle can be obtained by a 
sufficiently long string of applications of the solution axiom. But such strings 
are not needed in [6].) Since students are already familiar with systems of 
equations and inequalities, and since they are naturally inclined to calculate 
with infinitesimals exactly as they do with real numbers, the solution axiom 
seems quite appropriate. (It is, of course, easy to confuse students by 
concentrating too much on axioms, but this problem arises in standard as 
well as nonstandard calculus. In fact, the completeness axiom is easier to 
formulate and apply in the nonstandard form: every finite (i.e., lying between 
two reals) element of *R is infinitely near some real number.) 

Calculus courses based on [6] require more preparation from the instructor 
than conventional calculus courses; he must know nonstandard analysis. The 
syllabus of such a course is also subject to a constraint not found in 
conventional courses, the need to make contact with the standard approach 
soon enough for students who will be in a standard course next semester (or 
quarter). Nevertheless, on the basis of the (admittedly fragmentary) infor
mation available to me, it appears that where the nonstandard approach to 
freshman calculus has been tried it has usually succeeded. Keisler's book 
provides a valuable service by isolating, and giving a careful elementary 
exposition of, the part of nonstandard analysis that one ought to know before 
teaching from [6]. 

Nonstandard analysis provides natural mathematical models of many 
situations where one's intuition involves infinite or infinitesimal quantities. 
For example, such models have been produced in economics, where one 
thinks of infinitely many individuals each having an infinitesimal impact on 
the whole economy [3], in probability theory, where one thinks of the 
probability of an event as the (infinite) number of favorable cases divided by 
the number of all cases [2], [7], [9], [12] and in physics, where one thinks of a 
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quantum field with infinite fluctuations in infinitesimal regions [8], The 
growing number of applications of nonstandard methods is likely to convince 
more mathematicians of the value of learning and teaching these methods; in 
particular, I expect that nonstandard calculus courses will not always be the 
rarity they are today. 

Of the three books under review, Keisler's is the most elementary, Davis's 
is next, and Stroyan and Luxemburg's is the most advanced. Keisler deals 
only with basic calculus, developing it using only a proper extension *R of R 
satisfying the solution axiom. The possibility of extending a superstructure is 
discussed only in an optional chapter. The existence of *R is established by a 
simplified version of the usual (Henkin) proof of Gödel's completeness 
theorem-simplified because of the simple form of the solution axioms. (The 
optional chapter also gives the ultrapower construction of a nonstandard 
model.) 

Going beyond calculus, Davis has chapters on topological and metric 
spaces, normed linear spaces, and Hilbert spaces (including the Bernstein-
Robinson theorem mentioned above). He also treats many of the calculus 
topics from a more advanced viewpoint; for example, the Riemann integral is 
defined for functions into a Banach space. The Stroyan-Luxemburg book 
contains discussions of a very large number of advanced topics in analysis, 
especially complex and functional analysis. For these purposes, the nonstan
dard model is taken to be an extension not just of R but of the whole 
superstructure over R (or over the space being considered). Furthermore, it is 
not enough to know that *R properly extends R; one needs to know that the 
nonstandard universe is rich in the sense that certain infinite systems of 
formulas are guaranteed to have solutions provided each finite subsystem has 
a solution. By specifying the meaining of "certain systems" in various ways, 
one obtains the definitions of an enlargement of a superstructure and of 
various sorts of saturated nonstandard models. Following Robinson [14], 
Davis uses an enlargement as his nonstandard universe. Stroyan and 
Luxemburg require only a proper extension of the superstructure in the first 
half of their book, but in the second half (where the general topology and 
other abstract topics are) they require a strong type of saturation (which 
implies enlargement). These models are obtained as ultrapowers (in Davis 
and the first half of Stroyan-Luxemburg) and ultralimits (in the second half 
of Stroyan-Luxemburg) of the standard superstructure. Thus, the easiest 
construction of a nonstandard model is in Chapter 1 of Keisler, the second 
easiest in Chapter 1* of Keisler and Chapter 3 of Stroyan-Luxemburg, the 
third easiest in Chapter 1 of Davis, and the hardest (and most powerful) in 
Chapter 7 of Stroyan-Luxemburg. 

Readers who want to learn nonstandard analysis from scratch are advised 
to begin with Davis or Keisler to learn the basics. Afterward, they can consult 
Stroyan-Luxemburg (especially the second half) for nonstandard ways of 
looking at many topics in analysis, or they can turn to the research literature, 
for example [5], [10], [11]. 

My reason for not recommending Stroyan-Luxemburg as an introduction 
to the subject is that I found it very difficult to read. Much of it resembles a 
rough draft rather than a finished book. A multitude of errors in grammar 
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(especially incomplete and run-together sentences) and usage distract the 
reader, and in at least one passage the punctuation is so bad that the meaning 
is altered. There are a number of annoying little slips, like "a real number in 
[0, 1] X R," or the use of = in two different senses on two consecutive pages 
with no explanation in either case. Concepts are often used (even in 
theorems) before they are defined, or a definition is included as a sort of 
afterthought in the statement of a theorem. Unusual notation and 
terminology add to the reader's difficulties. The arrangement of theorems and 
lemmas seems haphazard in several places. Finally, there are some actual 
mathematical errors, most of which are attributable to carelessness. For 
example, the truth definition (on pp. 35 and 36) by induction on sentences 
(rather than formulas) works only if every element of the model has a name 
in the language; the last exercise on p. 61 is incorrect if at least two of the 
three points are infinitely close; SX(2, Q is a double cover of the group of 
Möbius transformations, not an isomorphic copy (p. 165); and the balls 
described at the top of p. 203 do not cover the unit ball as claimed. One error, 
however, seems not to be just careless, and is also committed in passing by 
Davis (p. 82). Davis implies, and Stroyan and Luxemburg explicitly assert (p. 
42) that £os's theorem (the fundamental transfer theorem for ultrapowers) 
can be proved using only the Boolean prime ideal theorem rather than the full 
axiom of choice. A result of Howard [4] shows that this is not correct. One 
can get nonstandard models using only the Boolean prime ideal theorem, but 
one needs a Henkin construction rather than an ultrapower. (Incidentally, the 
proof of £os's theorem in Stroyan-Luxemburg is longer and more complica
ted than the usual proof. The extra complexity may have contributed to the 
error regarding the axiom of choice.) Finally, I would like to complain about 
the fairly common but quite illogical convention that constants are zero-place 
relation symbols (Stroyan-Luxemburg, p. 189); if they are to be viewed as 
special cases of something else, constants should be zero-place function 
symbols. Despite all these negative comments, I must recommend Part II of 
Stroyan-Luxemburg to anyone who has already learned nonstandard 
methods and some advanced topics in standard analysis and wants to see 
how they interact; there is a lot of interesting mathematics here. 
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Differential equations and their applications, by M. Braun, Applied Mathe
matical Sciences, vol. 15, Springer-Verlag, New York, Heidelberg, Berlin, 
1975, xiv + 718 pp., $14.80. 

Applied mathematics cannot reasonably be described as a single field. 
Unlike pure mathematics, which does possess a unity and a definite historical 
tradition, applied mathematics today is a collection of subjects bound loosely 
together by their common reliance on mathematical notation, ideas and 
methods. Because of this, a project of writing an introduction to applied 
mathematics for undergraduates may seem to be a hopeless task. 

Martin Braun has shown that one should not give up so easily. Certainly 
many people who think of themselves as applied mathematicians will not find 
their favorite circle of ideas in an elementary text on differential equations. 
What is to be found, besides an excellent leisurely development of differential 
equations, is an introduction to the interaction between mathematics and its 
applications. 

Mathematics can play an important, sometimes crucial, role in the struc
ture of other disciplines. The fundamental ideas and relations of a subject can 
sometimes be expressed quantitatively and unambiguously using mathemati
cal notation. When this is done, a mathematical model of some aspect of the 
subject in question results. Mathematics then provides frameworks in which 
the relations in the model may be analysed and manipulated to yield 
predictions. These predictions may be compared with data gathered in the 
field to foster confidence in certain aspects of the model and to discover 
shortcomings of the model. This process can, and often does, lead to an 
interaction between mathematics and the discipline under study whereby the 
model is successively improved. Perhaps the most exciting aspect of the 
modeling process is when new phenomena come to light whose existence was 
not previously recognized. Of course mathematics as a pure subject can 
benefit from this interaction as well. 

These aspects of the modeling process find expression in Braun's book by 
way of a sequence of case studies of various applications. This is certainly not 
a new idea, even in the context of elementary differential equations. 
Engineering students have been subjected to 'problems analysis' courses for 
many years. Such courses typically exploit the case method to teach model 
building, and, on the side, offer a swashbuckling approach to the elements of 
differential equations. As we shall see, the present text offers more than just 
an up-to-date version of such courses. 


