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Rekursive Funktionen in der Komputer Theorie, by Rózsa Péter, Akadémiai 
Kiadó, Budapest, Hungary, 1976, 190 pp., $12.00. 

The Theory of Recursive Functions developed in its present form in the 
decades following 1930. Pioneered by the work of Turing, Post and Church, it 
has aimed at making precise and at studying the notions of algorithm and 
computation. 

A (partial) function from the set of natural numbers into natural numbers 
is recursive if it can be represented by an expression formed from certain base 
functions and the operations of substitution, primitive recursion, and minimi
zation. The base functions comprise the successor function (S(x) = x + 1), 
the null function (N(x) = 0), and projection functions (U?(xl9 . . . , xn) = xi9 

where 1 < / < n). Primitive recursion is used to define a function 
h(z9 xl9 . . . , xn) from recursive functions f(xl9 . . . , xn) and 
g(z9y9 xl9. . . , xn) by the pair of equations 

h(0,xl9...,xn) = f(xl9...9xn)9 

h(S(z)9 xl9 . . . , xn) = g(z9 h{z9 x{9 . . . , xn), xl9...9 xn). 

The operation of minimization defines a (possibly partial) function 
ƒ(*„ . . . , * „ ) from a total recursive function g(y9 xl9..., xn) as the 
"smallest y such that g(y9 x{9. . . , xn) = 0," and is written 

f(*\> •••>**) = (HF)[ g(y, xl9..., xn) = 0]. 
Note that all recursive expressions can be enumerated and, hence, all recur
sive functions. 

A. Church conjectured in 1936 that this class of functions was precisely the 
class of all effectively computable functions [1]. More accurately, to every 
effective rule for computing a sequence of natural numbers there exists a 
recursive expression with number e such that the function defined by the rule 
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has the same value as the recursive function 

<pe(x)=U[{w)(T{e,x9y))] 

in Kleene's notation [2]. 
To date all attempts to define effective procedures which are not ex

pressible relative to a suitable coding in terms of recursive functions have 
failed, and Church's thesis has gained wide-spread acceptance. In the sequel 
the study of recursive functions was soon considered to provide the theoreti
cal foundation for computer science and, in this aspect, concerned itself with 
questions of effective computability, i.e. whether there exists an effective 
procedure for a given class of problems. 

Early research, interested in finding evidence for and against Church's 
thesis, studied a wide spectrum of models of computational processes and 
found that by using suitable encoding techniques it could be shown that all 
models had the same computational power, thus corroborating Church's 
thesis. 

Peter's book is written for the nonexpert and argues more often by example 
or intuition than by complete detailed proofs. The unifying concept of the 
text is to give evidence for Church's thesis. To this end various applied areas 
of computer science are surveyed. It is shown that each has an effective 
translation into the class of recursive functions and vice versa, thus 
establishing the computational equivalence of these areas. 

To illustrate this "translation" process establishing the equivalence of two 
models of computation let us take the class of recursive functions as one 
system, and a simple computer model as the other. We assume that our 
computer has an unlimited number of storage cells each capable of holding 
one natural number, and that it can manipulate these cells incrementing the 
content of a cell by one, or decrementing it by one unless it is zero, or 
interrogating if the cell contains zero. At the beginning, the input argument(s) 
are deposited in the first (n) cells. The computer then executes a finite 
program of instructions manipulating the cell contents, repeating possibly 
some instructions, and eventually may reach a HALT instruction. At that 
point the "result" of the computation is stored in the first cell. Other cells 
may have been used for intermediate storage. 

Showing that our computer model is computationally at least as powerful 
as the class of recursive functions amounts to exhibiting programs which can 
compute the base functions and can simulate all operations involved in 
defining a recursive function. Except for the operation of primitive recursion 
which has to be transformed into an equivalent iteration schema first, the task 
is quite straightforward. Once the programs have been found, they provide 
the tools for an effective translation of any recursive function ƒ into a 
program Pf on our computer which evaluates the function value for each 
argument assignment input to Pf. 

The key to showing that recursive functions can "simulate" the 
computations of our computer lies in coding strings of symbols and numbers 
into a single number. Usually a "Gödel numbering" is chosen: The sequence 
of numbers nl9..., nk is encoded by the productif1 */?22 * * ' Pkk where # is 
the /th prime number. It is clear that we can encode sequences of such Gödel 
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numbers in the same way, so that arbitrary (tree-like) structures of numbers 
can be uniquely represented by a single natural number. We then enumerate 
the alphabet of our computer model and encode the entire program and used 
storage contents along with a description of the next step to be executed by a 
suitably structured Gödel number. 

We have to show that the encoding and decoding of these numbers, e.g. 
extracting a specific exponent, can be done by recursive functions. These 
functions are the building blocks in defining a recursive function which 
simulates a step in the computation in our model. In this manner we can 
show that to every program P of our computer there exists a recursive 
function fP which, given the inputs to P as argument, has the corresponding 
output of P as value. 

Despite the fact that the essence of equivalence proofs always amounts to a 
programming effort, it is clear that it may require considerable ingenuity to 
find an elegant and economic coding permitting the translation. Also, the 
formal details of a translation often may obscure the intuitive idea of the 
underlying strategy. The book tries to score well on both accounts. The 
author takes great pains at motivating and explaining the proof strategy, and 
gives a wealth of different encodings for a variety of problems: Translation of 
arithmetic expressions, recursion and iteration schemata, two-level grammars, 
interpreters for LISP and decision-table programs, etc. Each subject is well 
explained, and for each it is investigated how to translate problems in the 
particular area into terms of recursive functions. Over the past twenty years 
the author has also published a number of articles giving each topic a 
rigorous and formal treatment. 

The book shows the connection between computer science and recursion 
theory. It can be taken in two ways: On the one hand, the mathematician 
who perhaps is inclined to see recursive functions as the essence of what he 
understands effective computability to be, may read this book in order to 
school his eye for the different guises under which these functions appear in 
the world of computing. The computer scientist, on the other hand, perhaps 
interested in what he considers the practical issue in his field, could read this 
book to learn about the structural unity underlying a diversity of questions he 
has considered. 

Judging from the style of presentation, the author addresses the second 
view point more directly. A large part of the book is devoted to motivate the 
reader to become interested in the mathematical facet of the problems arising 
in computer science, and it is apparent that the author can draw on 
considerable pedagogical experience for this. 

As indicated, Church's thesis cannot be proved or disproved unless the 
notion "effective rule" is given a formal definition. Short of doing so, one can 
speculate whether accepting the thesis would limit our view of the potential 
capabilities of computers as we might succeed in designing. In light of the 
material found since the formulation of the thesis, this appears unlikely. The 
last chapter in the book briefly mentions this and also cites without further 
discussion an incompleteness result by Kalmâr [3] as an intuitive 
counterargument. 

Theoretical research in computer science has passed from recursion theory 
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to computational complexity. Instead of investigating if there exists an 
algorithm to solve a given problem, more attention is given to study how 
economical (space or time intensive) an algorithm for a given problem 
potentially can be, thereby classifying decidable problems into (sub) 
hierarchies of difficulty. To the computer scientist, then, the book compiles 
material which is well understood for some time now. This is in line with the 
tutorial level at which the book is written. 
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Applied functional analysis, By A. V. Balakrishnan, Springer-Verlag, New 
York, Heidelberg, Berlin, 1976, vii + 309 pp., $19.80. 

For present purposes "functional analysis" will mean the study of Hubert 
spaces and of (not necessarily continuous) linear operators between such 
spaces. Let us recall that Hubert spaces are characterized among general 
Banach spaces by any one of numerous geometric properties, such as the 
parallelogram property of the norm (Jordan-von Neumann, 1935), or the 
existence of a norm-one projector onto every (closed linear) subspace 
(Kakutani, 1939; spaces of dimension < 2 are exceptional). These two 
conditions can be jointly utilized to show that any Banach space of dimension 
> 2 having sufficiently many finite dimensional linear metric projectors is a 
Hubert space (Rudin-Smith, 1961). More recently, isomorphs of Hubert 
spaces have been characterized in several spectacular ways; for example, as 
those Banach spaces in which every subspace is complemented [15], or those 
which obey a Central Limit Theorem property (due to several authors, see [1] 
for one presentation). 

The operator theory for Hubert spaces is dominated by the interplay 
between an operator and its adjoint which, thanks to the Riesz representation 
theorem, can be defined on the codomain of the given operator. Major 
achievements in this theory include the spectral theorem for normal operators 
(Hubert, Riesz, von Neumann, Stone, Gelfand-Naimark, Segal, et al, 
1906-1951), the polar decomposition of closed operators (von Neumann, 
1932), the dilation theory of Halmos and Sz.-Nagy (1950-1955), which in turn 
has led to the characteristic function and canonical model approach to the 
study of contractive operators (Livsic, Sz.-Nagy-Foia§, et al., 1946-1967), and 
the triangular representation of compact operators (Livsic, Brodskiï, et al., 
1954-1969). Presentations of these theories and much more are given in [7], 
[10], [18], [19]. Note that we are for the most part leaving completely aside the 
vast subject of operator algebras. 


