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be used to refute this proposal; as in [4].) But on the borderline of game theory, in the subject of 
so-called Borel games, the use of uncountably many iterations of the power set operation has 
turned out to be demonstrably essential for solving problems about R (at least, if 'subsystems' of 
set theory are to be used, as in Martin's proof of the determinateness of all Borel games [Ann, of 
Math. (2) 102 (1975), 363-371]). Of course, this is a far cry from number theory and from those 
'extravagantly' large cardinals which Gödel had in mind, (iii) To supplement the text where (a) 
spectacular uses of the skeptical, and (b) modest uses of the speculative tradition are given: (a') 
in physics, the atomic theory is the standard example of a success fitting into the speculative 
tradition (atoms being hardly much more plausible than ghosts, from ordinary experience); in 
mathematics, nonconstructive methods. (b') Modest uses abound of course; cf., for example, my 
review of Brouwer's work in 83 (1977) of this Bulletin (around p. 88). 

Remark. It cannot have escaped the reader's notice that there is no counterpart in current 
foundations to what is surely the most glaring difference between modern natural science and the 
early speculations referred to in (i): the skillful use of a massive amount of empirical data. 
Certainly the history of mathematics-not, of course, mere snippets as in (i)-(ui) above-would 
seem to provide, at present, the most obvious source of empirical data for the general questions 
behind t.f., and, in particular, for a scientific study of Bourbaki's 'intuitive resonances' (in [1]). Of 
course, precautions are needed against overliteral interpretations of the data (cf. end of [2] about 
misplaced textual criticism) and artifacts (cf. Remark (ii) in [8]); as in all sciences, only more so 
because here the influence of the observer on the observation is particularly strong. The use of 
statistical data, as in [9], over long periods provides one way of taking precautions. It may well 
be that this historical perspective would be bad for mathematical practice (with busybodies 
drawing premature 'practical' conclusions from ill-digested data). But in the reviewer's opinion it 
is certainly good for foundational research, specifically, for opening up this subject to (genuine) 
problems raised by recent computer-assisted proofs: (a) Historically-and scientifically, if not 
artistically-speaking, such proofs, for example, of the 4-color conjecture, involve incomparably 
more progress than, say, the use of large cardinals in (ii) above. Compare the effort which would 
be needed to explain large cardinals to Archimedes with getting him to understand, let alone put 
together the largish computer used by Haken and Appel (and compare the general interest of the 
four color conjecture with that of Borel determinacy). (b) There are genuine doubts about the 
reliability of computer-aided proofs not resolved by the particular idealizations of reliability, that 
is, the doctrines of rigor in various branches of t.f. Inasmuch as reliability is a principal topic of 
foundations, these new proofs present novel data for foundations: it would seem premature (to 
put it mildly) to assume that these new data are less fundamental than the matters of 'principle' 
stressed in t.f. 
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The Legendre symbol ( f ) is defined for any odd prime p and any rational 
integer a that is not divisible by;?. It is equal to +1 or to — 1 according as the 
congruence x2 = a mod/? does or does not have a solution in the ring of 
rational integers Z. The quadratic law of reciprocity then states that the 
equations 

f ) - ( f ) = (-iri)/2(-1)/2 

and 

(ir)_("ir"/2- (f)-!-»*'-"". 
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hold for distinct odd primes p and q. In particular the law tells us how /?'s 
being a square mod q is related to #'s being a square mod/?. While the law 
was known to Legendre, it was first proved completely by Gauss in the 1790s 
and published in his Disquisitiones arithmeticae in 1801. 

The quadratic reciprocity law is a special case of the Hubert reciprocity law 
(1890s). Here I will use the language of the/?-adic numbers which were not 
invented until some years later. For each prime p the /?-adic numbers Qp are 
the completion of the field of rational numbers Q with respect to the distance 
function \a — fi\p provided by the valuation \a\p = l/p' obtained by writing 
a = plm/n with m and n prime to/?. Then Qp can be made into an extension 
field of Q with an extended valuation | \p. This construction parallels the 
construction of the real numbers R which, in number theory, are denoted Q^ 
with absolute value | l^. In this way one obtains fields Q2, Q3, Q5, . . . , Q^ 
which are completions of Q under essentially all the valuations that Q can 
possess. The valuation | \p is also written/? with/? either a prime or oo. There 
are two underlying principles in the use of all these fields. The first is that 
number theory is considerably easier in the Q '̂s than in Q itself; for example, 
if p is a finite valuation, then Qp is, so to speak, just one notch above the 
finite field Fp with which it is naturally related, the passage from F^ to Qp 

being provided by a process called HensePs lemma. The second is that all the 
Q^'s, taken collectively, tell us a lot about Q. Sometimes a statement is valid 
over Q if and only if it is valid over all Qp, and when this happens we say that 
the Hasse principle holds. For example, every quadratic form in 3 variables 
over F^ represents 0 (easy); this can be lifted to Q^ where every quadratic 
form in 5 variables represents 0 (not hard); finally there is a Hasse principle, 
i.e. a quadratic form over Q represents 0 if and only if it does so in all Qp 

including oo (hard). Situations in Qp are called local, those in Q global. To 
what extent, then, is a global situation described by all the local situations 
taken together? 

To get back to the Hilbert reciprocity law-it says that the product of 
Hubert symbols over all/? is 1, i.e. 

i(¥)-> 
for a, /? in Q where the Hilbert symbol (a, /?//?) is, by definition, equal to 
+1 or to — 1 according as the equation ax2 + (iy2 = 1 does or does not have 
a solution in Qp. Almost all Hilbert symbols in the formula turn out to be 1 
so there is no question of convergence. 

Now consider an algebraic number field i7, i.e. a finite extension field of Q. 
In algebraic number theory F takes the place of Q, and F contains a ring o, 
its ring of algebraic integers, which takes the place of Z. Each valuation p on 
Q has a finite number of extensions to valuations p on F. In this way one 
obtains an infinite number of finite valuations, and a finite number of infinite 
valuations, on F. The set of all these valuations is written S. Local situations 
occur in the completions Fp, global ones in F. Hilbert's reciprocity law 
becomes 
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in F, the quantities involved being defined essentially as they were for Q. 
Hilbert's ninth problem (1900) called for a law of reciprocity in any 

algebraic number field. "For any field of numbers the law of reciprocity is to be 
proved for the residues of the Ith power, when / denotes an odd prime, and 
further when / is a power of 2 or a power of an odd prime. The law, as well as 
the means essential to its proof, will, I believe, result by suitably generalizing 
the theory of the field of the /th roots of unity, developed by me, and my 
theory of relative quadratic fields." This was completed by Takagi in the early 
1920s and Artin in the late 1920s, for abelian extensions of algebraic number 
fields, i.e. in a more general context that will be described in a moment. Here 
an abelian extension will be a finite extension with an abelian galois group. 

Our concepts at the moment are inadequate for the formulation of the 
general reciprocity law, but we get a clue as to what they should be by 
reinterpreting the Hubert reciprocity law in a certain way. Consider a, p in Q 
with /? a nonsquare in Q. Let E be the quadratic extension E = Q(Vp ) of 
Q. So the galois group g of E/Q is a group of two elements. Write them 
{1, a}. This group g, not just any group of two elements, is to be the target of 
the Hubert symbol! Consider a valuation p of Q. For the sake of discussion, 
suppose /? is not a square in Qp. The galois group Qp of Q (̂ V/? )/Qp is also 
a group of order two, it can be naturally imbedded in g, and its elements can 
be written {1, a}. Define the new Hilbert symbol 

a9QJiyp)/Qp 

P 

depending on whether a is or is not a norm in the extension QPÇ\/JÎ )/Q. 
Now being a norm is equivalent to solving 

« - (*i - V 7 ƒ,)(*, + Yfi yx) - x\ - fyl 

and this is equivalent to solving ax2 + j3y2 = 1, so the new Hilbert symbol is 
really the same as the old one. The significance of the new interpretation lies 
in the fact that the Hilbert symbol can be regarded as a norm residue symbol 
which takes its values in the galois group of E/Q. This is the key to extending 
the definition of the norm residue symbol from an extension E/Q which is 
quadratic to one that is abelian. Indeed it is the basis of the definition in an 
abelian extension E/F of an arbitrary algebraic number field F, with F = Q 
as a special case. 

Class field theory can be divided into two parts, local and global. In each 
part it is the study of all the abelian extensions of a certain base field. The 
underlying philosophy is to describe all abelian extensions in terms of objects 
residing within, or close to, the base field. First consider local class field 
theory. Here Fp denotes any finite extension of Qp where, for the sake of 
discussion, we take/? finite. The valuation on Fp is written p. Fp is an example 

1 or a 
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of what is known as a local field. The topology induced by p makes Fp into a 
locally compact topological group and thereby provides Fp with a Haar 
measure that is essentially unique. Let E<$ be an abelian extension of Fp with 
ty on Ey inducing p on Fp. So E% is also a local field. Let $p denote the galois 
group of E%/Fp. One can naturally associate with E^/ Fp a certain finite 
extension of finite fields, denoted E^(^)/Fp(p). (Remember, Q^ is associated 
with the prime field Fp.) Local class field theory then tells us that there is a 
unique homomorphism of Fp into QP with certain properties. Its image is gp. 
Its kernel is the group of norms NEs /F È%9 so it deserves the name Norm 
Residue Symbol. It is written, rather its action is written, 

[ £ ] E 9 , Va E F,. 

Of course FP/NE /FÈ% — ĝ . For so-called unramified extensions E^ of Fp9 

the norm residue symbol is closely related to the Frobenius automorphism in 
the galois group of the extension of finite fields E^(^)/Fp(p), and for such E% 
it can be defined without much difficulty. One has a number of ways of 
defining the symbol for other E%, all of them difficult and circuitous. In the 
end, there is a unique norm residue symbol for E^/Fp; the group NE /F Ê<$ is 
an open subgroup of finite index in Fp; every subgroup Hp of Fp with this 
property comes from some abelian E% in this way; and there is a one-one 
inclusion reversing correspondence E^ <-> Hp between the abelian extensions 
E<% of Fp on the one hand, and the subgroups Hp of the above type on the 
other, in which E% corresponds to NE /F Ê^. The group Hp corresponding to 
E<$ is said to be the class group belonging to E^, and the abelian extension 
corresponding to Hp is called the class field belonging to Hp. This, then, is the 
central message of local class field theory. 

In global class field theory one starts with an algebraic number field F, i.e. 
a finite extension of Q. Instead of using the classical language of moduli to 
describe the general reciprocity law we will use the language of ideles. Ideles 
were invented by Chevalley in the 1930s. An idele i = ( i ^ e a *s a n element of 
the Cartesian product UP(EQFP in which almost all \ip\p = 1. The ideles form a 
subgroup JF of the above product. F can be imbedded in JF by a —> (a)pGÖ, 
these ideles are called principal, and they form a subgroup PF of JF. The 
group JF is made into a locally compact topological group in a certain natural 
way. Let E be an abelian extension of F. It is then possible to define a certain 
homomorphism NE/F from JE to JF which is called the norm and which 
agrees with the usual norm from PE to PF, i.e. from È to F For each 
valuation p on F fix a valuation $ on E which induces p on F, take 
completions Fp C £^, let QP denote the galois group of E^/Fp9 and note that 
Öj, is naturally imbedded in the galois group g of E/F. In particular each 
situation E%/Fp is local with gp abelian and so the local class field theory 
applies to it. (For the sake of discussion we continue to ignore the infinite 
valuations.) In particular, if we take an idele i = (i^eo» the quantity 

/ i„ E^/Fp \ 

—r- ra' 
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is defined for all p and can be realized not just in gp but also in g. One defines 

where almost all terms in the infinite product turn out to be 1 E g. This 
provides a homomorphism t->(i, E/F) of JF into g. It is called the 
reciprocity map. Its image is all of g. Its kernel is the group PFNE/FJE. In 
particular JF/PFNE/FJE = g. Since PF is in the kernel one has 

n ( ± ^ ) - , ».eA 
t>eQ\ ^ / 

This is the general reciprocity law. It is the focal point of class field theory. It 
contains the Hilbert reciprocity law as the special case where E is a quadratic 
extension of F = Q. The group PF^E/F^E *S a n °P e n subgroup of finite index 
in JF that contains PF; every subgroup H of JF with this property comes from 
some abelian extension E in this way; and there is a one-one inclusion 
reversing correspondence E<r*H between the abelian extensions E of F on 
the one hand, and the subgroups H of the above type on the other, in which 
E corresponds to PFNE/FJE. The group H corresponding to E is said to be 
the class group belonging to E, and the abelian extension E corresponding to 
H is called the class field belonging to H. Furthermore, the manner in which 
the valuation p extends to E can be described in terms of the group H 
belonging to E. (In classical terminology-the manner in which a prime ideal p 
of o decomposes in E can be described in terms of the class group H 
belonging to E.) The class field belonging to PjJ^, where J^ denotes the 
group of ideles t = ( t ^ e Q with \xp\p = 1 for all finite valuations p, is of 
particular significance and has a name, the Hilbert class field of F. If E is an 
abelian extension of Q (not of any F\) there is the remarkable theorem of 
Kronecker that E C Q(£) with f a root of unity. 

There is also a class field theory in characteristic p > 0 in which the 
starting point of the field of rational numbers Q is replaced by the field of. 
rational functions k(t) with k a finite field, and algebraic number fields are 
replaced by algebraic function fields, i.e. by finite extensions of k{i). 

So much for the message. In class field theory, however, there is more than 
the message. There is also the medium. As far as the hard work is concerned, 
and class field theory is hard whatever way you look at it, you have a choice. 
You can take the route of classical analysis in which the zeta function and the 
L-series play a crucial role; you can take the noncommutative algebraic 
approach based on the theory of simple algebras; you can replace this with ad 
hoc cohomology of 2-cocycles; or with systematic cohomology of finite groups; 
you can use modern analysis, specifically harmonic analysis in locally compact 
groups; and you can take varying doses of all these theories at the same time. 
Which medium is best? The answer for the moment is the Lang 
dictum-" . . . no one piece of insight which has been evolved since the 
beginning of the subject has every been superseded by subsequent pieces of 
insight. They may have moved through various stages of fashionability, and 
various authors may have claimed to give so-called modern treatments. You 
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should be warned that acquaintance with only one of the approaches will 
deprive you of techniques and understanding reflected by the other 
approaches . . . '\ 

Today it is possible to gain access to class field theory through a number of 
books. Hasse uses classical analysis. The Artin and Artin-Tate route is via 
ideles, topology, no Haar measure, no analysis, 2-cocycles in the local theory, 
modern cohomology in the global theory; four fundamental chapters on 
cohomology are missing, however. Cassels-Fröhlich is idelic and cohomo-
logical; it goes far beyond the main theorems. Weil uses simple algebras but 
no cohomology; it is heavily analytical in the modern sense. Lang uses a 
blend of moduli and ideles, a blend of classical and modern analysis, and a 
trace of cohomology. Goldstein is similar to Lang, but with a greater 
emphasis on ideles and modern analysis. Janusz gives the traditional 
approach to the subject. 

The theory of numbers, the book being reviewed, is about local and global 
class field theory. The approach is idelic, heavily cohomological, and mildly 
analytical in a modern way. Algebraic function fields, as well as algebraic 
number fields, are included. The first chapter is an abstract development of 
the cohomology of groups leading to the cup product, the cohomology of 
finite groups, and galois cohomology. Chapter two is standard fare about 
valuations, Hensel's lemma, Hilbert ramification theory, the different and the 
discriminant. The third chapter discusses local fields and idele groups with an 
emphasis on their topological and analytical properties. In particular, the 
classical theorems known as Finiteness of Class Number and Dirichlet's Unit 
Theorem are corollaries to the compactness and discreteness of certain groups 
associated with the idele group JF. Chapter four is a build-up to the state
ments of the main theorems of class field theory. It starts with a study of the 
cyclotomic fields which are at the heart of the development of class field 
theory. The fifth chapter contains proofs. The book concludes with a forty 
page history of class field theory and a lengthy bibliography. Zeta functions 
and L-series are mentioned but not used. 

The theory of numbers was first published in Japanese, in 1969. It is a 
thoroughly reworked and thoroughly polished production that started in the 
1950s with a series of seminars on number theory held each Sunday in the 
home of S. Iyanaga. Main contributors to the volume are S. Iyanaga, 
Tannaka, Tamagawa, Satake, Hattori, Shimizu, and Fujisaki. The translation 
is by K. Iyanaga. In spite of the multiple authorship, there is an integrity to 
the volume and there are no abrupt changes in style from chapter to chapter. 
The only exception is the historical appendix which, in contrast to the rest of 
the volume, is vivid and descriptive. The general philosophy seems to be to 
develop each machine as a separate unit, somewhat more fully than is 
required, and then put it into storage until it is needed. Some authors have a 
way of phrasing things so that their mathematics generates its own motivation 
as it is being developed. Here the motivation has to come from the appendix. 
Because of this, and because of the throughness of exposition, some readers 
will be discouraged. The book assumes "some basic knowledge of algebra, 
such as contained in . . . van der Waerden's Algebra I, II, and a knowledge of 
Galois theory.. . knowledge concerning the locally compact topological 
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groups is summarized . . . ". From a logical point of view, then, the book 
starts from scratch. In actual fact, however, you should either have some 
familiarity with algebraic numbers, cohomology and locally compact groups, 
or be in the presence of someone who does. If not, start with Lang. Otherwise 
there is a chance that you will get bogged down in the machinery. On the 
other hand, if you are ready for the book, and if you master it, you will have 
a complete understanding of class field theory in the modern medium and 
will be ready to approach difficult and active areas of research like the 
arithmetic theory of algebraic groups, modern analytic number theory, and 
nonabelian class field theory. If you are looking for a cohomological devel
opment of class field theory in introductory book form, then the only feasible 
alternative to Iyanaga is Cassels-Fröhlich. There everything is done in 203 pp. 
Iyanaga takes 400. Some readers will find Cassels-Fröhlich sketchy, others 
will find Iyanaga ponderous. While the definitive text in the modern medium 
remains to be written, and writing it will require enormous effort, even a 
touch of genius, the authors of The theory of numbers are to be thanked and 
congratulated for successfully completing a big task and for enriching the 
literature with a coherent account of class field theory in the modern spirit. 
Needless to say, The theory of numbers should be in the possession of anyone 
interested in algebraic number theory. 
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Stability of fluid motions. I, II, by Daniel D. Joseph, Springer Tracts in 
Natural Philosophy, vol. 28, Springer-Verlag, New York, 1976, xiii + 282 
pp., $39.80, and xiv + 274 pp., $39.80. 

The distinction between laminar flow and turbulent flow of a fluid is, in the 
first place, a matter of everyday experience. Broadly speaking, laminar flow is 
regular and smooth, while turbulent flow is characterized by the irregularity 
and random nature of the motion. Although the division between these two 
types of flow is not always sharp, and although a precise definition of 
turbulence is difficult to formulate, there is sufficient experimental evidence 
to indicate that the classification of fluid motions into two states, laminar and 
turbulent, is a very good approximation to real behaviour, at least in so far as 


