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turn out idiot savants in the sciences as being more likely to be useful to the 
state. But if mathematical intelligence is strongly associated with emotional 
deprivation and social alienation, then even we earthy, super-honest, solid, 
and simple native Americans-the qualities that Ulam admires in us-are in for 
trouble. 
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We don't want to get involved in the current, often heated, debate as to 
what constitutes pure, as opposed to applied, mathematics. We just want to 
start this review by saying that the theory of interpolation of operators is an 
impressive application of pure mathematics to pure mathematics. The purists 
(?) are welcome to wrangle over the semantics. 

The subject has its origins in classical Fourier analysis, where it was 
conceived as an elementary means of finding //-estimates. The very nature 
of interpolation theory, however, is functional-analytic: typically, a linear 
operator T is bounded between spaces Xa and Ya when a = 0 and a = 1, and 
one wants to conclude that T carries Xa to Ya whenever 0 < a < 1. Such 
problems arise in many areas of analysis, and the abstract theory has always 
been influenced, even guided, by the potential applications to such areas as 
harmonic analysis, approximation theory, and the theory of partial 
differential equations. As a result, interpolation has no one place to call 
home; it is, quite simply, interesting mathematics. 

Its success, like that of a good executive, stems from its ability to handle 
specifics while operating on a generally higher plane. Consider, for example, 
the thorny Fourier and Hilbert transforms. A great deal of highly-specialized 
information is known about these operators, and it rarely comes for free. Yet, 
remarkably enough, the "correct" //-estimates can be derived from general 
interpolation theorems valid for all linear operators. 

Such examples show that it is worthwhile to solve the interpolation problem 
simultaneously for all operators. It also changes the face of the problem, 
because the operators themselves, since only their linearity is important, tend 
to fade into the background. Interpolation theorems then are more properly 
construed as statements about the underlying system of spaces. This obser
vation, simple as it is, represents the point of departure from classical 
//-interpolation (the Riesz-Thorin and Marcinkiewicz theorems) into the 
abstract theory of interpolation spaces and interpolation methods. 

Suppose { A " a : 0 < a < l } i s a family of Banach spaces for which an 
interpolation theorem is desired. The idea is to construct, using only the 
extremal spaces X0 and Xl9 an intermediate space (XQ9 X^a, say, for which 
the interpolation property automatically holds. Several of these constructions, 
called interpolation methods, are known. What remains, and this is often the 
hard part, is to identify the interpolation space (X0, Xl)a with the original 
space Xa. 
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All of the known constructions are manifestations of one or other of the 
two basic interpolation methods, the complex method and the real method. 
These methods in turn are based on the main ideas underlying the proofs of 
the Riesz-Thorin and Marcinkiewicz theorems, respectively. The complex and 
real methods themselves are inequivalent and frequently produce different 
families of interpolation spaces. 

The starting-point is a pair of Banach spaces X0 and Xx (more general 
kinds of spaces are also allowed), each of which is continuously contained in 
the same Hausdorff topological vector space 3E. The intersection XQ n Xx and 
the sum X0 + Xx can then be formed inside X. They are Banach spaces under 
the norms 

IMkn*,- max(ll*lk' IMk); IMk+*i- inf(IMk +INk)> 
where the infimum is taken over all representations x = x0 + xl9 with x0 E 
X0 and xx E Xx. The pair (X09 Xx) is called a compatible couple. 

In the complex method, devised independently by A. P. Calderón, S. G. 
Krein and J. L. Lions in about 1960, analyticity is used to select the 
interpolation spaces. Let F be a bounded, continuous function on the strip 
{0 < Re z < 1}, taking values in X0 + Xl9 and analytic in the interior of the 
strip. It is prescribed that F take values in X0 on the line {Re z = 0}, and 
values in Xx on the line {Re z = 1}. Now suppose 6 is fixed, with 0 < 0 < 1. 
As F varies, vectors x = F(0) are selected from X0 + Xl9 and they constitute 
the interpolation space (X0, Xx)0. It is a Banach space under the norm 

The interpolation property follows, as in the Riesz-Thorin theorem, from the 
Hadamard "three-lines theorem". 

The real method was introduced by E. Gagliardo in 1959. Equivalent, but 
far simpler, methods were developed by J. L. Lions, E. T. Oklander and J. 
Peetre. The most natural formulation is the one obtained by Peetre. For each 
x in X0 + Xl9 and each t > 0, let 

K(t; x) = xJrd+xfi\x0\\Xo + t\\Xl\\Xl). 

For each fixed x9 the "Peetre AT-functional" is an increasing, concave, 
function of /. The interpolation spaces are selected by imposing growth 
restrictions on the A'-functionals. Thus, for example, when 0 < 0 < 1 and 
1 < q < oo, the space (X0, X^)9q consists of the vectors x in X0 + Xx for 
which the norm 

is finite. The proof of the interpolation property is elementary. 
These are the definitions. Before they can be satisfactorily launched at the 

applications, a number of results of a general nature have to be established. 
That the true depths of the subject are indeed being plumbed here is perhaps 
indicated by the fact that essentially everything that one wants to work does. 
For instance, under minimal hypotheses, the duals of the interpolation spaces 
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between X0 and Xx turn out to be the interpolation spaces between the duals 
*£and*f. 

It is clear that the success of the theory will hinge on the possibility of 
identifying the abstract interpolation spaces with those occurring in practice. 
In the real method, for example, this is tantamount to obtaining an accurate 
description of the ^-functional. Several important cases are known. 

For the pair (L1, L00), the AT-functional is given by K(t; f) = f'0f*(s) ds, 
where f* is the decreasing rearrangement of the function ƒ. The interpolation 
spaces (L1, L00)^ are then easily identified as the Lorentz spaces Lpq, where 
0 = 1 — l/p. Similar results hold for pairs (Lpq, Lrs) of Lorentz spaces; the 
Marcinkiewicz theorem is an easy corollary. More importantly, this 
description of the AT-functional shows that the natural class of interpolation 
spaces between L1 and L00 is the class of rearrangement-invariant Banach 
function spaces. This forges the essential link between the real method and A. 
P. Calderón's fundamental theory of interpolation on rearrangement-
invariant spaces; the two theories are thus easily shown to be equivalent. 

In the Fefferman-Stein real-variable theory of //^-spaces, the space of 
functions of bounded mean oscillation (BMO) often arises as a natural 
substitute for L°°. The afunctional for the pairs (L1, L00) and (L1, BMO) 
are closely related. For the latter pair, it is equivalent to f'0(f

 #)*0) ds, where 
ƒ* is the "sharp-function" in terms of which BMO is defined. This, and 
related results, lead to a number of basic interpolation theorems for Hp-
spaces. 

Let C be the space of continuous functions on the unit circle, Cl the space 
of continuously-differentiable functions. The AT-functional for the pair 
(C, C1) is ^co*(2f; ƒ), where <o*(/; ƒ) is the least concave majorant of the 
modulus of continuity (*>(/;ƒ). The interpolation spaces are Lipschitz spaces 
Lip(a; q) (of which the spaces Lip(a; oo) are the classical Lipschitz spaces 
Lip(a)). 

When C is replaced by Lp, the counterpart of C1 is the Sobolev space W*9 

which consists of those functions in Lp whose first-order distributional 
derivatives are also in Lp. The afunctional for the pair (Z/, Wj) is equiva
lent to the //-modulus of continuity o)p(t;f). The resulting interpolation 
spaces are the Besov spaces B^. The complex method produces the quite 
different family of "generalized Sobolev spaces" H*; these are sometimes 
known as the "spaces of Bessel potentials". Some of the deepest applications 
of interpolation-space theory, involving a delicate interplay between the real 
and complex methods, are to be found here. 

The theory of semigroups of operators produces some important generali
zations of the Besov spaces. Let {T(t): 0 < / < 00} be an equibounded, 
strongly-continuous, semigroup of operators on a Banach space X. Let A be 
its infinitesimal generator and let D (A) be the domain of definition of A in X. 
The interpolation spaces for the pair (X, D (A)) are the "generalized Lipschitz 
spaces" Lip(a, q; X). They reduce to the Besov spaces B£q when X = Lp and 
{ T(t)} is the semigroup of translations. Whatever the semigroup, these spaces 
measure, in a precise way, the rate of convergence of T(t) to the identity, as t 
tends to zero. Interpolation-space theory provides a tangible means of 
comparing the spaces generated by different semigroups, and thus leads to a 
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number of poweful approximation theorems. These methods have been 
extensively studied in an earlier text in this series (P. L. Butzer; H. Berens, 
Semi-groups of operators and approximation, Band 145). 

There is another fundamental connection between the real method and 
approximation theory. The A'-functional for the pair (X0, Xx) is closely related 
to the "degree-of-approximation functional" 

E(t;x) = inf||x - *0||„ 

where x E X0 + Xx, and the infimum is taken over all x0 E X0 for which 
11*01l*o ^ '• Comparison of the spaces generated by the K- and is-functionals 
leads to, for example, "Jackson- and Bernstein-type" approximation 
theorems, and to results on the approximation of compact operators by those 
of finite rank. 

Given the broad nature of the subject, it is doubtful that any one text could 
meticulously sweep every corner. Interpolation spaces does, however, present a 
thorough treatment of the functional-analytic aspects of the theory. It is 
about evenly divided between theory and applications. There are some 
significant omissions (//^-spaces and rearrangement-invariant spaces, for 
example, are barely mentioned) but this is perhaps not important, given the 
introductory nature of the text. One feels, however, that more background 
material might have been given in order to properly set the scene. 

The first chapter, for instance, contains only a skeletal treatment of the 
Riesz-Thorin and Marcinkiewicz theorems, and provides only shallow moti
vation for the general theory. It also contains a number of errors, minor in 
themselves, but which could add up to a headache for a beginner. The 
assertion at the foot of p. 7 is false, and this invalidates a proof on p. 8. The 
parameter range in the statement of Paley's theorem is incorrect (the theorem 
is false for p = 1); the corresponding range in the statement of the Marcin
kiewicz theorem is not specified at all. In the proof of the Marcinkiewicz 
theorem, a factor of t~x is incorrectly included in the expressions for the 
ZAnorms, and there are a couple of typographical errors. In the proof of the 
Riesz-Thorin theorem (and again in Chapter 5), the authors refer to 
"bounded functions of compact support" when there is no apparent topology 
on the underlying measure spaces; even if there were, the simplistic elegance 
of Thorin's proof demands the use of simple functions rather than bounded 
functions of compact support. 

This rather dismal opening should not, however, be allowed to obscure the 
real contributions that are made in the subsequent chapters. The strength of 
the book lies in its elegant treatment of the theory of interpolation spaces and 
interpolation methods. Here, the authors have given us a beautiful account of 
some beautiful mathematics. It is for this that the book will be valued and, 
more importantly, used. 

COLIN BENNETT 


