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It is just 25 years since Imre Fényes [2] discovered the Markov process 
associated with a solution of the Schrödinger equation. This process is easy to 
describe. Suppose that we have a solution ip of the Schrödinger equation 

0) ftt(x,t) = i(±A-Vy(x,t). 

Here x ranges over R" and / over R and for each t the function \pt(
x) = 

\p(x, /) is in L2(R"). We have set ft = m = 1, and V is the operator of 
multiplication by a possibly time-dependent real function (also denoted by 
V). The quantity \\^t\\\ is independent of / and may be normalized to 1, so 
that p, = |i//,|2 is the density of a probability measure on Rn. We may write 
*// = exp(i? + iS) and set u = grad R, v = grad 5, b = u + v. Then the 
diffusion process with drift b-thàt is, the Markov process satisfying 

(2) dx(t) = *(*(/), /) dt + dw(t) 

where w is the Wiener process-and with initial distribution p0 has the 
probability distribution p, at all times t. Conversely, given such a diffusion 
process (2) we may let b+ be the backward drift and set u = (b — £*)/2, 
v = (b + b+)/2. Then u is the gradient of \ log p. If we assume that v is also 
a gradient then there is a unique F and a unique solution i// of (1) such that 
with i// = exp(i? + /S) we have u = grad R and D = grad S. 

To get a better idea of these processes let us consider a few examples. 
Consider the Wiener process itself where as customary we require the 

particle to be at the origin at time 0. Then the drift b(x, t) is 0 f or / > 0, but 
for / < 0 the particle is destined to go from x to the origin in |/| units of time 
and the drift is b(x, t) = x/t. Similarly b*(x, t) = 0 f or / < 0 but b+(x, i) = 
x/t for / > 0. Now it is straightforward to compute w, v, R, 5, \p, and V. We 
find 

•-<«>"M-îiH£)-
which satisfies (1) with V = x2/At2. The graph of this time-dependent 
potential is a paraboloid which is very shallow for large negative t but which 
snaps shut as / ->0 and then opens out again, forcing the particle to go 
through the origin at / = 0. Thus this process is not free; it is subject to a 
force F = —grad V = — x/2t2. 

A shortcut for computing V is available from the fact [3], [4] that Newton's 
law F = ma holds, where a is the mean acceleration defined as follows. For a 
stochastic process x we define 
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f x(t + h) - x(t) } 

( x(t) - x(t - h) ) 
* . * ( / ) - J ™ ^ " ^ "««ij 

(where "éP, is the past at time / and % is the future at time /), and the mean 
acceleration is a = \DD^x + jD^Dx. For the example of the preceding 
paragraph we readily compute that a = — x/2t2, so that (since we have set 
m=l)F= - x/2t2and V = x2/4t2. 

For contrast, let us give an example of a free process (one subject to no 
forces, with mean acceleration zero). The complex Gaussian function 

/ a2 + t2 V/4 ( x2(a ~ '0 \ 

where a is a strictly positive constant, is a solution of the free Schrödinger 
equation (V = 0). We find that b(x, i) = {t - a)x/(a2 + t2). For large 
values of / this is approximately x/t, the velocity needed to bring a particle 
from the vicinity of the origin to x in time t, and the process looks like the 
Wiener process with a normally distributed random drift term. 

The Schrödinger equation is linear and therefore the principle of superpo
sition holds. Consider the solution of the free Schrödinger equation given by 

x^(x, t) = a(xpa(x - x0, t) + ^a(x + x0, t)) 

where a is a normalization constant. This describes the famous double slit 
through experiment where a beam of particles passes through two slits at x0 

and — x0. (For simplicity the description is with respect to a Galilean frame 
of reference moving with the beam.) If a is small compared to x0 then with 
large probability at time 0 the particle is either close to x0 or close to — x0, 
but for times / comparable to a we see that p, is quite complicated. This 
complicated diffraction pattern is the probability distribution for a Markov 
process, a random motion in which the particle has no memory of the past. 
Yet if we did not know better we would be tempted to attribute this pattern 
to an interference effect for some sort of wave motion. 

Consider finally the time-independent function ^(JC, /) = ir~l/2e~^, where 
n = 3. This is the ground state of the hydrogen atom and satisfies (1) with 
V = 1 — 2/\x\. In quantum mechanics, once one has found the wave 
function there is no more to be said, but for the stochastic interpretation of 
the Schrödinger equation this is just the beginning. The wave function 
determines the diffusion process, and then we can ask what the trajectories of 
the process look like. In the present example we find that b(x, i) = — x/\x\. 
The particle diffuses with a constant tendency to head toward the origin 
(which is offset by the fact that there are more directions away from the 
origin to choose from than there are directions heading towards the origin). If 
one shows a movie of a particle performing this process then no one will be 
able to tell whether the movie is being run forward or backward. Real wave 
functions which are eigenstates of the hydrogen atom for higher energies have 
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nodal surfaces which divide space into noncommunicating regions. The 
diffusing particle never crosses a nodal surface. 

The stochastic interpretation of the Schrödinger equation is intriguing. It is 
at variance with the traditional interpretation of quantum theory because it 
presents a picture of continuous motion described in classical probabilistic 
terms. 

The book under review starts off (Chapters 2-4) with some standard 
material in probability theory, starting at the beginning and moving rapidly 
to the theory of diffusion on a Riemannian manifold. Then Caubet treats the 
diffusion processes associated with solutions of the general Schrödinger 
equation 

('£-*-*(IM* 
on a Riemannian manifold. A beautiful and important application of the 
extra generality given by a Riemannian manifold is obtained from the 
manifold R3 X SU(2). Dankel [1] used this to obtain the stochastic interpre
tation of the Pauli equation, and thus to give a nonrelativistic stochastic 
treatment of spin. Caubet (apparently unaware of DankeFs work) presents an 
account of this topic. 

The reviewer has trouble understanding the author's intentions beginning 
with §5.4 entitled "Mouvement brownien relativiste". The author continues to 
use the language of diffusion theory but replaces the Laplacean on Euclidean 
space by the d'Alembertian on Minkowski spaces. It does not seem that 
stochastic processes having the desired properties exist. It may be that the 
author intends diffusion theory to serve merely as a suggestive analogy when 
he comes to the relativistic theory because he says in the Introduction (p. 17): 
"Il y a donc une différence essentielle entre le processus de Wiener et le 
mouvement brownien relativiste: dans le premier la trajectoire est décrite par 
la particule ponctuelle tandis que dans le second la trajectoire est au niveau 
quantique sans réalité physique, la particule à ce niveau étant constituée de 
Tonde elle-même (ou d'une partie de l'onde)." 

The stochastic interpretation of the Schrödinger equation offers many 
challenging problems to probabilists. One problem is to characterize unaccel-
erated diffusions. How can one tell by observing the trajectories of a diffusion 
process whether the potential V in the corresponding Schrödinger equation is 
zero? 

Suppose we have a Markov process corresponding to a solution of the free 
Schrödinger equation. What is the asymptotic behavior of the trajectories? 
Does x{t)/t tend to a limit with probability one as / -» oo? If so, what is the 
correlation of the limits as / -» oo and t -> — oo? The same question can be 
asked for solutions belonging to the continuous spectrum for Schrödinger 
equations with potential V converging to zero sufficiently fast at infinity. 
How does one distinguish probabilistically between solutions belonging to the 
discrete and continuous portions of the spectrum? 

Is there a probabilistic interpretation of the superposition principle? What 
does it mean for one Markov process to be a superposition of several others? 

The stochastic interpretation applies equally well to Schrödinger equations 
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describing an ensemble of k particles. Suppose that we are not allowed to 
observe trajectories directly, but only to observe the position of k particles at 
one fixed time. (Then we know that the predictions of the stochastic interpre
tation agree with the predictions of quantum mechanics.) We are free to 
impose any time-dependent potentials we wish and to consider k — 1 of the 
particles as observing instruments. How much information can we obtain 
about the trajectory of the remaining particle in this way? 

The stochastic interpretation gives a clear meaning to the notion of the 
probability that a particle (in a process corresponding to a solution of the 
Schrödinger equation) is ever in a given region during a given interval of 
time. The orthodox theory of quantum mechanical measurement is restricted 
to observations made at one fixed time. Is there a quantum mechanical 
definition of this probability which agrees with the probability given by the 
stochastic interpretation? 

There remains the problem of developing a stochastic relativistic theory. 
Theories of relativistic interaction appear to require fields. In recent years 
probabilistic techniques have played a large role in constructive quantum field 
theory, but the random fields have been constructed on Euclidean space, 
rather than Minkowski space, and the results for quantum fields have been 
obtained by analytic continuation. This is analogous to studying the Schröd
inger equation by means of the corresponding heat equation, and then 
analytically continuing in time. The field-theoretic analogue of the stochastic 
interpretation of the Schrödinger equation remains to be constructed. 

ADDED IN PROOF. Some of the questions raised here have been answered by 
David Shucker in a Princeton thesis (to appear). 
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Grundzüge der universellen Algebra, by Herbert Lugowski, Teubner-Texte zur 
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Universal algebra, as a method, has been extremely fruitful; by contrast, as 
an independent discipline it appears a little arid, owing to the fact that so 
many of its results have been somewhat less universal in their application. 
Perhaps the subject has developed best when working in harness with another 
part of mathematics, such as logic or category theory, and this is reflected in 
more recent books such as [1], [2]. Another field which would provide a good 


