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BOOK REVIEWS 

The wave equation on a curved space-time, by F. G. Friedlander, Cambridge 
Monographs on Mathematical Physics, no. 2, Cambridge Univ. Press, New 
York and London, 1976, x + 282 pp., $39.50. 

The geometrical theory of Cauchy's problem for linear hyperbolic partial 
differential equations with variable coefficients was originated by Hadamard 
and, years later, reshaped by Marcel Riesz. Now F. G. Friedlander in the 
book under review incorporates both Hadamard's and Riesz's ideas in a new 
formulation of the geometric theory in terms of distributions. 

To discuss this subject, we begin with Hadamard. Summarizing his work on 
Cauchy's problem in a lecture series in 1920 [5], [6], Hadamard stressed the 
underlying analogy between elliptic and hyperbolic equations, and, through 
several major innovations, showed how Green's formula can be adapted from 
its original context of potential theory to Cauchy's problem for the wave and 
other hyperbolic equations. Both the analogy Hadamard referred to, and the 
obstacles to applying Green's formula to hyperbolic equations in the way he 
intended, are apparent when we compare, for instance, the three-dimensional 
Laplacian 

A3 « 3 2 / 3 J C ? + 32 /9JC| +d2/dxj 

and the three dimensional d'Alembertian 

D3 = 3 2 / 3 x | - 3 2 / 9 J C | -d2/dxj. 

Let £ = (£j, £2> £3) denote any fixed point, and x — (xv x2, JC3) a variable 
point, in real three-dimensional Euclidean space E3. If d(£9 x) is the 

Euclidean distance V(*i ~ £1 f + (x2 ~~ £2 f + (*3 ~ £3 )2 > an(* r(&x) the 
Lorentzian distance V(*i ~" £1 )2 ~ (x2 ~~ £2 )2 ~ (x3 "" £3 )2> between JC and 
£, then Laplace's equation A3w « 0 has the solution i/3(£, x) = l/rf(£, x) for 
</(£, x) > 0 and the homogeneous wave equation n3t; = 0 the solution 
^(l? x) =* l/r(£> x) f° r K& x) r e a l a n ^ > 0. The first function £/3(£, JC) enters 
the theory of Poisson's equation A3w = ƒ. In fact, if u(x) is a solution of the 
equation on, say, a finite, smoothly bounded domain fi, then a representation 
of w(£), for any £ E fi, is obtained by using l/3(£, x) as auxiliary function in 
Green's formula on the subregion of fi on which */(£, x) > e and then letting 
€|0. Hadamard's theory made it possible to use F3(£, x) in an analogous 
procedure pertaining to the inhomogeneous wave equation • 3 D == ƒ say on 
the half-space £+ = {x = (xv JC2, x3): xx > 0}. The eventual outcome of that 
procedure is a representation of t;(£), for any £ E £+, in terms of the values 
of v, dv/dx{ and their derivatives with respect to JC2,

 x& o n the initial surface 
xx = 0. The first step in Hadamard's method is to use K3(£, JC) as auxiliary 
function in an integral formula analogous to Green's formula, but pertaining 
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to the d'Alembertian rather than the Laplacian. We refer to all such integral 
formulas simply as Green's formula. In the case at hand, this formula is 
applied on the domain D*(e) * {x » (xl9 x2> x3): 0 < xx < £j, r(|, x) > e) 
in an obvious parallel to the first step for Poisson's equation. The second step, 
having ej,0, is, however, far more difficult. This is because, as ej,0, the 
nonhorizontal part of the boundary of D*(e) approaches a nondegenerate 
surface, the portion of the back characteristic cone 
£j, /•(£, x) * 0} situated between its vertex £ and the initial plane xx = 0. For 
this reason, the integrals that occur in Green's formula on D*(e) and its 
boundary need not all be expected to converge as ej,0; in higher-dimensional 
problems, none of the corresponding integrals need converge. Hadamard 
dealt with this apparently disastrous fault by inventing a new concept in 
analysis, that of the "finite part" of a divergent integral. In an odd-dimen­
sional space like £3 , Hadamard noticed that an integral such as the one just 
indicated over the region D*(e) has an expansion in fractional powers of e, at 
most a finite number of the powers being negative; similarly for the integrals 
in Green's formula on the boundary of D^(e), The "finite part" of one of 
these integrals is the part in this expansion with respect to e that remains 
finite as e|0, and the relation expressed by Green's formula among the 
original divergent integrals implies a relation among the finite parts of the 
integrals. By calculating the finite parts, Hadamard was able to obtain the 
representation of v(Q referred to notwithstanding the divergencies as e -» 0. 

Any m-dimensional linear differential operator L * aiJ(d/dx')(d/dxJ) 
reducible to the d'Alembertian 

by a linear change of independent variables y =•= \(x) is of course subject to 
the theory of the d'Alembertian. (We use the summation convention, under 
which repeated indices are summed from 1 torn.) Hadamard calls such an 
operator "hyperbolic"; for L to be hyperbolic it is necessary and sufficient 
that the quadratic form a%tj be of normal hyperbolic type, i.e., be reducible 
to s\ - si - • • • - ^ by means of a linear substitution tt * CySj. If x « 
(JC1, . . . , jcm) and £ =•= (£* , . . . , £m) it turns out with reference to the 
Lorentzian distance between y » (>>„ . . . 9ym) * X(x) and TJ * (TJ1, . . . , r\m) 
* A(0 that 

0>i - i i ) 2 - (y2 - V2? (ym- u*)2- °v(x' - € ' ) (^ - ^ 
the matrix (atJ) being the inverse to the coefficient matrix (a'J). In the case 
m = 3, for instance, the function [aij(x

i - ^)(xJ - &)X~X/2 thus is a solution 
of the equation Lv = 0 for such x that (£ being fixed) the denominator is real 
and positive, and this function can be used in Hadamard's process directly 
without going to the trouble of changing variables to reduce L to the 
d'Alembertian. Such observations suggest the geometrical concepts Hada­
mard introduced to treat hyperbolic equations with variable coefficients. 

An m-dimensional linear differential operator M defined by 
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with coefficients that are permitted to be functions of JC, is called hyperbolic if 
the quadratic form g%tj is of normal hyperbolic type for each x. Here 
g = |d€t(g^.)| with (gy) = (giJ)~l. Hadamard extended the foregoing methods 
to the operator M by use of the "pseudo-Riemannian" manifold having the 
first fundamental form da2 = gydx'dx^ The geodetic distance between two 
points of this manifold takes the place of the Lorentzian distance. Along 
certain geodesies of this manifold, da2 = 0. These are called "null geodesies", 
the geodetic distance between two points of a null geodesic being zero. The 
conoid consisting of all null geodesies issuing from a specified vertex £ is the 
analog in this context to the characteristic cone with vertex £; it is called a 
"characteristic conoid". In what Hadamard named Cauchy's problem, a 
solution v(x) of Mv = ƒ is sought having prescribed values and prescribed 
normal derivatives on a given (n — l)-dimensional "initial surface" S. The 
prescribed functions are called "Cauchy data". The initial surface is required 
to be "space-like", which means that do2 < 0 on S and implies that S 
truncates any characteristic conoid issuing from a nearby vertex £, S and the 
conoid together enclosing a compact /w-dimensional region Z)jL The boundary 
of D$ consists of a portion S* of S and a portion C$ of the conoid. The effect 
of Hadamard's theory is to represent t>(£), for £ sufficiently near S, by means 
of certain integrals over S* and its boundary involving Cauchy data and over 
Dj and Cj involving/. To derive this representation, a function Wm(£, x) is 
constructed that satisfies inside Dj the adjoint homogeneous equation 

and is singular on C$ in a manner similar to that of the auxiliary function for 
the d'Alembertian. This function and v(x) are used in Green's formula on a 
region such as 2>|(e) = {x E Z>j: | Wm(£, x)\ > e}. Then the desired repre­
sentation of v(0 results in spaces of odd dimension m by taking the finite 
parts of the integrals involved as eJA In even-dimensional spaces, a parallel 
procedure can be employed, but with what is called the "logarithmic part", 
not the finite part, of the integrals in question. 

Powerful and, in concept, elegant, Hadamard's method was intimidating in 
its details. For this and other reasons, Marcel Riesz in 1949 [8] presented an 
alternative way of accomodating Green's theorem to the markedly singular 
behavior of Hadamard's auxiliary functions. To describe Riesz's method in 
the case of the d'Alembertian 

• = Dm = Ji_il -ii, 
m dx2 3-xf 9*f 'm 

let 

r& x) -V(*i - tif - (*2 - M2 (** - u2 

denote Lorentzian distance between points x = (xl9..., xm) and £ = 
(£i>.. . , £m) in real w-dimensional space Em, for which the quantity under 
the root sign is positive. Let S be an (m - l)-dimensional space-like surface, 
in this case a surface on which dx2 - dx\ - • • • - dx^ < 0 (for instance, 
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the plane xx = 0). Let C* denote the characteristic cone {x E Em: r(£, x) = 
0} with vertex £, S* the piece cut out of 5 by this cone, and Z)j the 
m-dimensional conical region enclosed between S* and C*. Riesz bases his 
treatment of Cauchy's problem for the d'Alembertian on the properties of a 
one-parametric family of integrals 

convergent with bounded v for a > m — 2. The constant H (a) = Hm(a) is 
determined in such a way that these integrals, which in structure generalize 
the classical integrals of Riemann and Liouville, also behave like them. For 
instance, Ia(I^) = /a+^, UIa+2 = Ia\ also, 

D[r(€, x)a-m+2/H(a + 2)] = r(fc x ) a " 7 ^ ( « ) , 

a relation used later in Green's formula. In addition, for sufficiently smooth 
v9 the function of a, Iav, can be analytically and uniquely continued to values 
of a that are < m — 2, and under this continuation I°v = v. If •£> = ƒ in 
£>|, Riesz applies Green's formula over Z>j using r(£, x)a~m+2/H(a + 2) 
with a > m - 2 as auxiliary function. This function vanishing on C*, and in 
view of a previously noted relation, the result can be written as 

'*•>«> - mh% ƒ„/<*>'«• -r*""-*+ «(ST2) ƒ„ 

Here, t//öfrz is Lorentzian "co-normal" differentiation, which on S is 
differentiation in a certain outward direction, but is in a tangential direction 
on C*; dS is element of area in a Lorentzian sense. Like Iav in the first 
member, both integrals in the second member of this relation can be 
continued analytically to values of a < m — 2. Making the continuation 
down to the value a = 0 provides the representation of t; = I °v desired. 

Riesz extended these methods to equations with variable coefficients by 
using characteristic conoids in place of characteristic cones and Hadamard's 
geodetic in place of Lorentzian distance. He constructed auxiliary functions 
for use in Green's theorem in the general case by means similar to Hada­
mard's. His analytic continuations originally cost a great deal of effort, but 
were much simplified in a second article [10] appearing 12 years after the 
first. With this amendment, his treatment becomes to my mind a model of 
lucid and inviting mathematical exposition, with which I should urge anyone 
interested in hyperbolic equations to become familiar. 

Hadamard's and Riesz's theories of linear hyperbolic second-order partial 
differential equations helped give impetus to the development of the theory of 
distributions with its abstract calculus of fundamental solutions. Friedlander 
in this work in effect is helping to repay the debt thus owed by distribution 
theory to Cauchy's problem, reformulating Hadamard's and Riesz's thinking 
in terms of fundamental solutions and other distributions. This is a sub-
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stantial achievement carried out in full detail. To sketch the ideas, let ( ƒ, <p) 
denote the linear form associated with a given distribution ƒ acting on test 
functions <p, which are functions of class C°°(Em) and of compact support. 
(Sometimes it is useful to write (ƒ, <p) with a dummy variable as, say, 
(ƒ(*)> <p(x)) and also to refer to f(x) and <p(x) in place of ƒ and <p.) The 
equation Mu = ƒ for distributions u and ƒ is to be interpreted as the totality 
of relations (u, M*<p) = (ƒ, <p) for all test functions <p. A distribution w 
satisfying this equation can be constructed if M has a "fundamental 
solution". This is defined to be a distribution G^(x) depending on a specified 
point £, acting on test functions <p(x), and satisfying the condition MGç(x) = 
S(x - | ) , which means that ((?$, M*<p) = <p(£) for all test functions <p. Indeed, 
if « is the distribution defined by the relations 

(*) ( ^ ) - ( / © > (<?**)) 
for all test functions <p, then the equalities 

(«, M*<p) = (ƒ(!), (Gt, M*<p)) = (ƒ(£), ?(£)) 

show immediately that Mw = ƒ. Formula ( * ) is adapted to Cauchy's prob­
lem in the following way. Suppose u(x) to be a smooth solution of Mu = ƒ in 
a geodesically convex neighborhood N of a space-like surface S. Represen­
tations of w(£) are desired for points £ on one side of S. Denote by / +(S') the 
aggregate of all points on this side of S that also lie inside conoids Cx with 
vertices x on S. If £ E / + (5 ' ) n # , Friedlander constructs a fundamental 
solution G^+ of M supported in / + ( 5 ) and acting on test functions with 
support in N. Then in formula ( * ) he takes xu in place of w, where x is the 
characteristic function of J +(5), to obtain (x«, <p) * (A^(xw)(9> (<V> <p)) for 
all test functions <p with support in N. (The suffix £ attached to Af signifies 
that the coefficients in M are to be evaluated at £ and the differentiations 
performed with respect to the £'.) Since M(xu) * xf + distributions resulting 
from the differentiation of x and thus supported on the boundary of / + ( 5 ) , 
we have (xu, <p) = (x(£)/(£)> (<V, <p)) + linear forms in <p containing Cauchy 
data for u on S. (No contribution appears referring to parts other than S of 
the boundary of /+(5').) From an explicit expression for (G^9 <p), all the 
linear forms in the second member of this formula are calculated explicitly to 
reconstruct the representation for u(Q9 £ E J*(S) n N9 of Hadamard and of 
Riesz. Like these two predecessors, Friedlander uses coordinate-invariant 
notation, obviously appropriate in such a geometrical approach to Cauchy's 
problem and, besides, helpful in his treatment of related geometrical topics. 
These include characteristic manifolds, characteristic initial-value problems, 
caustics, the propagation of discontinuities, progressing waves, and the 
approximations of geometrical optics. He also discusses Huygen's Principle, 
which pertains to the diffusion of waves, in this being necessarily sketchy, but 
giving certain topics in detail. Although primarily concerned with scalar wave 
equations, he treats equations of tensor type as well. Most of the book is 
devoted to four-dimensional space-time (m = 4), in which he uses 
constructions closely parallel to Hadamard's, but in his final chapter he 
handles all dimensions m > 2 by adapting Riesz's idea of analytic 
continuation to the construction of fundamental solutions. His first two 
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chapters are compact summaries of results he will need from differential 
geometry and from the theory of distributions on manifolds, with appropriate 
references; an appendix covers ideas required from topology. Besides this 
kind of background, a prospective reader would do well to acquaint himself 
with the classical theories on which the author's treatment is modeled* 
Hadamard's method in relation to the simplest case, that of the wave 
equation with constant coefficients, is explained briefly and with exceptional 
clarity in the original German edition of Courant-Hilbert, vol. 2 [1, pp. 
430-442]. Riesz brings out his own ideas very effectively in a 1960 study of 
the wave equation [9], as well as in the two works previously mentioned. Also 
helpful may be the discussions in Courant-Hilbert, vol. 2 [2], of the propa­
gation of discontinuities and progressing waves (pp. 618-642) and of 
Friedlander's own problem of adapting distribution theory to Hadamard's 
approach (pp. 740-744). 

The author's style is terse and made more difficult by the presence of many 
misprints. Too numerous to list, these are not likely, however, to mislead the 
kind of reader to whom this sophisticated monograph is addressed. 

No single treatise could do justice to all the approaches to Cauchy's 
problem that have been invented since 1920. In some of these alternatives to 
the Hadamard-Riesz-Friedlander direction, characteristic conoids again play 
essential roles, but much simplicity is gained by using less singular auxiliary 
functions, which lead to integral equations for solutions of Cauchy's problem. 
The integral equations are essentially of Volterra's type and can be solved by 
iteration. The earliest such scheme and one of the most attractive is due to M. 
Mathisson [7]. S. Sobolev and Y. Choquet-Bruhat have developed a different 
idea in several papers, which Friedlander references. Other ways to derive 
integral equations are given by the reviewer [4] and D. Sather [11]. 

Courant and Lax produce a formula for the solution of Cauchy's problem 
by relatively simple methods that depend on the theory of discontinuous 
progressing waves and the theory of spherical means, and without heavy 
geometrical machinery. Their original treatment [3] is in classical terms, a 
later account [2, pp. 727-736] in the language of distribution theory. 

In the so-called energy methods for Cauchy's problem, characteristic 
conoids enter unobtrusively, almost invisibly. These methods are based on the 
energy inequality, which in its usual form refers to a coordinate system in 
which time / s xl is distinguished from spatial variables y = (x2,..., xm), 
and in which the plane t =•= 0 is the initial surface. Let Z =* {(t>y): 

c^T-iix1 - alf < a1 - t, 0 < J < T} be a slice of a (solid) cone, with 

0 < T < al
9 and with small enough positive constant c to make the conical 

mantle c y S ^ C * ' ~ fl/) m a* ~" t space-like. Let Bt denote the section 

{(t,y): C^7L 2 ( JC I - a1 f < a1 - t) of this cone at height t. If w(l, y) is a 

solution in Z of Mu = ƒ, the energy inequality provides a bound for 

E(t) - ƒ J (du/dtf + 2 (du/dxlf \dy 

in terms of £(0) and an integral containing ƒ. It leads to a uniqueness 
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theorem immediately and to an existence theorem in various possible ways. A 
comprehensive discussion of energy methods, and further references, are 
given in Courant-Hilbert, vol. 2 [2, pp. 652-661, 668-671]. 

Many important questions about hyperbolic equations are being studied 
today besides regular linear initial-value problems in space-time regions near 
a space-like (or characteristic) initial surface, to which our discussion and 
Friedlander's book for the most part have been confined. Among the other 
questions are, for instance, boundary-value problems, effects of nonlinearity, 
the long-range behavior of solutions, and scattering. In the extensive field 
thus evidenced, Friedlander's monograph is an outstanding instance of 
unified, detailed treatment of advanced ideas, worthwhile to anyone who 
makes the preparation called for, indispensable to specialists. 

REFERENCES 

1. R. Courant and D. Hubert, Methoden der mathematischen Physik. Vol. 2, Springer, Berlin, 
1937, Distributed by Interscience, New York. 

2. , Methods of mathematical physics, Vol. II, Interscience, New York, 1962. MR 25 
#4216. 

3. R. Courant and P. D. Lax, The propagation of discontinuities in wave motion, Proc. Nat. 
Acad. Sci. U.S.A. 42 (1956), 872-876. MR 18, 399. 

4. A Douglis, The problem of Cauchy for linear, hyperbolic equations of second order, Comm. 
Pure Appl. Math. 7 (1954), 271-295. MR 16, 44. 

5. J. Hadamard, Lectures on Cauchy9s problem in linear partial differential equations, Yale 
Univ. Press, New Haven, Ct., 1923. 

6. , Le problème de Cauchy et les équations aux dérivées partielles linéaire hyperboliques, 
Hermann, Paris, 1932. 

7. M. Mathisson, Eine neue Lbsungsmethode fur Differentialgleichungen von normalen hyperbo-
lischem Typus, Math. Ann. 107 (1932), 4(XM19, 648. 

8. M. Riesz, Vintégrale de Riemann-Liouville et le problème de Cauchy, Acta Math. 81 (1949), 
1-223. MR 10, 713. 

9. , A geometric solution of the wave equation in space-time of even dimension, Comm. 
Pure Appl. Math. 13 (1960), 329-351. MR 22 # 11215. 

10. , The analytic continuation of the Riemann-Liouville integral in the hyperbolic case, 
Canad. J. Math. 13 (1961), 37-47. MR 26 #5131. 

11. D. Sather, Pointwise bounds for the solutions of a Cauchy problem in terms of the Cauchy 
data, J. Differential Equations 3 (1967), 286-309. MR 36 #526. 

A V R O N D O U G L I S 

BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 84, Number 2, March 1978 
©American Mathematical Society 1978 

1. Integer programming and network flows, by T. C. Hu, Addison-Wesley, 
Reading, Mass., 1969, xii + 452 pp., $17.50. 

2. Integer programming, by Harold Greenberg, Academic Press, New York, 
1971, xii + 196 pp., $16.50. 

3. Integer programming, by R. S. Garfinkel and G. L. Nemhauser, John Wiley 
and Sons, New York, 1972, xiv + 427 pp., $23.25. 


