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Krein, and the technicalities are more involved, but the general features of 
the solutions are similar to those for Krein's problem. 

The reviewer is in the uncomfortable position of not being an expert in 
prediction theory, the main topic of the book under review. Rather, I am 
someone who was brought up in Hardy spaces and developed a curiosity 
about how they get involved with prediction theory. For such a person the 
book is almost ideal. I imagine the same would be true for someone reared in 
probability theory who developed the complementary curiosity to mine. The 
book begins with three short but intense preparatory chapters which provide 
the needed background in function theory, Hardy spaces, and probability. 
The fourth chapter deals with various prediction problems, beginning with 
the Kolmogorov-Wiener problem mentioned above. The central theme is an 
effort to express in terms of the spectral measure A the amount of dependence 
between the past and the future of the process. In the two remaining chapters, 
Krein's theory of strings and its connection with de Branges spaces of entire 
functions are developed in detail and applied in the manner sketched above. 

I found the comparatively informal style of the book congenial and 
effective. Many details of proofs are left to the reader in the form of carefully 
prepared exercises. The authors have clearly made an effort to write a book 
that will be of value to the learner. If my experience is typical, they have 
succeeded. 
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Probability methods for approximations in stochastic control and for elliptic 
equations, by Harold J. Kushner, Academic Press, New York, San Fran­
cisco, London, 1977, xvii + 243 pp. $23.00. 

The analysis of the transition from Markov chains to diffusions, the 
convergence of solutions of difference equations to corresponding ones for 
differential equations and related approximation problems have been studied 
intensively for many years and appear frequently in so many different 
specialized contexts that it is practically impossible today to have a compre­
hensive idea of what goes on in the field. Kushner's work aims directly at a 
specific class of approximations for optimal diffusion processes which are 
associated with partial differential equations (PDE). In this way he limits the 
material to manageable size which one can divide, roughly, into two parts. 

The first one is the content of Chapters one to seven and Chapter ten and 
deals with background material, the theory of weak convergence of measures 
(without details), and the convergence of (nonoptimal) chains to diffusions. 
The second part, the main point of the book, is the content of Chapters eight 
and nine and deals with the approximation of optimal diffusions. Chapter 
eleven deals with a special topic, the separation theorem of stochastic control. 

Let us look into part one in some detail. The beginning of the theory of 
approximations of Markov chains by diffusions is probably the well-known 
work of Khinchine [1]. The analysis here is simple and direct. It is based on 
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the assumption that the limiting diffusion equation has smooth solutions and 
the problem is reduced to a two term Taylor expansion. This method can 
easily yield error estimates that depend upon the smoothness of the solution 
of the diffusion equation. The major drawback of this approach is precisely 
its reliance on a priori regularity assumptions which are either hard to obtain 
or nonexistent for the nonlinear problems associated with optimal diffusions. 
For diffusion in bounded domains Khinchine's method is more involved 
because he assumes only interior regularity for the PDE and convergence is 
only proved in the interior (behavior near the boundary is not analyzed). 

It was known as early as in 1928 [2] that one could obtain convergence 
results like Khinchine's indirectly by compactness arguments which do not 
require a priori regularity. In fact, these methods were devised to provide an 
existence theory for the PDE's under consideration. From the probabilistic 
point of view the PDE methods of [2], energy identities, compactness, the 
(precursor of) Sobolev's inequalities, etc., appear somewhat remote and 
unnatural to the problem, however. 

As a very simple example of Khinchine's method consider the quantity 

u"(t,x) = Ex{f(x"(t))} 

which is the expectation of a smooth function of the state xh(t\ with 
xh(0) = x, of a one dimensional random walk. The random walk moves to 
the right or to the left a distance h with probability \ and the time intervals 
between jumps are independent and exponentially distributed with parameter 
h~2. It follows that uh{t, x) satisfies Kolmogorov's equations 

duh{t,x) i / 1 i \ t 
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uh(0,x)=f(x), xGR1. 

Now suppose that u(t, x) satisfies the heat equation 

du(t, x) ! dhtjux) 
(2) — _ . _ ^ 2 , t > 0, «(0, x) = ƒ(*), 

and that/(x) is smooth so that u{t, x) is a smooth solution. We note that 

uh{t, x) - u(t, x) - Ex {u(t - s, xh(x)%} 

- E J '\ -u,(t - s, xh(s)) -±u(t- s, xh(s)) 
(3) ^° L * 
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ds. 

This identity is easily verified. From the analytical point of view it is simply 
an expression for the "error" uh — u as an integral relative to the Green's 
function of the finite difference problem (1). Since u(t, x) satisfies the heat 
equation, the integrand in (3) goes to zero as A-*0 and this shows that 
indeed M*-»«asA-»0for each t and x and uniformly on compact sets. 
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The smoothness of u plays an important role here. The approximation of 
(1) by the heat equation is the main objective. 

To illustrate the Hilbert space method very simply we describe the method 
of [2] which contains the essential ideas (which are much more streamlined 
now). First suppose that we have a solution of (2) over some interval 
[a, b] c Rl with u(t, a) = u(t, b) = 0. Multiplying (2) by u, integrating over 
[a, b] and integrating by parts we get the identity 

(4) f u2(t, x) dx + f' f u2(s, x)dxds = f f2(x) dx, 

which is called the energy identity associated with (2). In [2] an identity 
similar to (4) is obtained for the finite difference equation (1). Actually, the 
heat equation is not explicitly treated in [2] but the methods carry over. Using 
this identity they establish a priori estimates independent of h for the L2 

norm of uh (over the grid contained in [a, b]) and the L2 norm of differences 
of uh. From this they deduce equicontinuity of the functions uh and similarly 
for finite differences of uh. Passing to the limit hlO they obtain the desired 
convergence to the solution of (2). 

The main point of the approach of [2] is that to pass from (1) to (2) one 
does not have to know anything about (2) to begin with except uniqueness, 
which in case of (2) follows also from (4). 

The probabilistically natural indirect methods first appeared in 1956 [3], [4], 
after the theory of weak convergence of measures on complete separable 
metric spaces was developed and after the theory of Markov processes had 
progressed far enough to provide probabilistic representations for solutions of 
many PDE problems. In [5] and [6] there are a number of theorems on the 
convergence of chains to diffusions using indirect, compactness methods. 

The best results on the convergence of chains to diffusions were obtained 
by Stroock and Varadhan [7], [8] who first gave a new formulation of 
diffusion theory in terms of martingale problems requiring minimal 
assumptions about the smoothness of the coefficients of PDE. At the same 
time they introduced a wealth of useful techniques that go much beyond the 
immediate needs in their papers and the mere removal of regularity 
assumptions on the coefficients. 

Briefly, the martingale formulation works as follows. Let xh(t\ t > 0 be 
the process under consideration whose behavior as h j0 is to be analyzed. 
Suppose (for simplicity) that by process we mean a probability measure Ph on 
C([0, oo), Rl) = Q with the topology of uniform convergence on compact 
sets. Suppose further that this measure is characterized by the property that a 
certain class of functional on H are Ph martingales relative to % = a-algebra 
of Borel sets in Q that involve trajectories up to time t. This corresponds 
analytically to saying that something is a weak solution of an equation, the 
martingale characterization being a natural notion of weak solution in the 
probabilistic context. 

For the convergence argument one first shows that the Ph are weakly 
compact. There are many convenient criteria for this ([3]-[6]); this step is 
analogous to the step of getting a priori estimates for finite differences in [2]. 
Next one passes to the limit in the martingale identity characterizing Ph 
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(using suitable functional if necessary) along a convergent subsequence. 
Finally, by independent means one argues that the limit measure P is 
uniquely characterized by the martingale formulation and hence every 
sequence of Ph converges as A|0 to P (this last step may be a difficult one, in 
general, but not in the heat equation example). 

Kushner gives a very clear and well-organized account of the work 
originating in [3]-[8] along with the necessary background material. This is 
the content of what we called part one. Among the relatively novel points in 
his treatment is the good use of the Skorohod representation [5, p. 9] and the 
device of enlarging the state space to include secondary processes along with 
the primary ones. This avoids difficulties when the secondary processes are 
not continuous functionals of the primary one. On the other hand it introdu­
ces new difficulties in the identification of the limit. The new problems are 
not, however, serious and can be easily overcome in the context of nonoptimal 
diffusions, i.e., the linear problems. 

Part two (Chapters eight and nine) is the main part of Kushner's work. It 
treats the convergence of optimal Markov chain approximations of optimally 
stopped and/or optimally controlled diffusion processes. The discrete 
approximations are the rather obvious ones where one replaces derivatives by 
finite differences so that the resulting problem does correspond, consistently 
with the PDE, to a Markov chain problem. This puts restrictions on the 
coefficients of the PDE and/or the mesh size that correspond to the usual 
stability conditions but may be control dependent and quite complicated. In 
the convergence proof the main difficulty is in identifying properly the limit 
as an optimal diffusion. This is done very nicely and should be of substantial 
interest to specialists in stochastic control. 

It should be kept in mind that the underlying PDE problem for the optimal 
diffusions is a nonlinear problem (not at all close, in any sense, to a linear 
problem). The probabilistic methods that are used in the convergence proof 
of the optimal chains provide an existence theory for the optimal diffusions. 
Kushner does not mention this. Instead he presents his work as an approxi­
mation theory that is aimed at actual computations but does point out that 
much work needs to be done on the computational aspects. This is definitely 
an understatement of the situation, especially since the indirect methods of 
proof that are so attractive and allow such generality give no idea whatsoever 
about the relative merits of different approximation schemes or other 
approximation methods in general. 

In the reviewer's opinion Kushner's work is an important contribution to 
the literature of stochastic control. It is particularly useful because the author 
has organized very well and has presented very clearly the material of the first 
seven chapters that lead up to the optimal diffusion problems. 
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Estimates for the d-Neumann problem, by P. C. Greiner and E. M. Stein, 
Princeton Univ. Press, Princeton, N. J., 1977, 194 pp., $6.00. 

Several complex variables has enjoyed a renaissance in the past twenty-five 
years, reaching deeply into modern algebra, topology, and analysis for 
techniques to attack long standing problems. An important example is the 
question of identifying domains of holomorphy, i.e. those open sets in C + 1 

(or, more generally, in complex manifolds) for which at least one holomor-
phic function has no extension outside the set. Early in this century E. E. Levi 
defined a condition, now called pseudoconvexity, which he proved was neces­
sary, and conjectured was sufficient, to characterise domains of holomorphy. 
More precisely, for domains with smooth boundary one can define a Hermi-
tian form, now called the Levi form, on the space of holomorphic vectors 
tangent to the boundary. The domain is then called pseudoconvex (resp. 
strictly pseudoconvex) if the Levi form is positive semidefinite (resp. definite). 

Levi's conjecture for C"+1 was finally proved nearly fifty years later by Oka 
[16] (and simultaneously by Bremermann, [1] and Norguet [15]) after a long 
series of related papers. Efforts to extend the results to complex manifolds led 
Grauert [5] to discover a new, more general proof making extensive use of 
sheaf theory. A totally different proof was later obtained by Kohn [11] (using 
a crucial estimate of Morrey [13]) as a consequence of his solution of the 
"9-Neumann" boundary value problem in partial differential equations. 

Since Kohn's breakthrough on the problem there has been considerable 
interest in constructing solutions for the inhomogeneous Cauchy-Riemann 
(C-R) equations in a bounded complex domain and studying their boundary 
behavior. Kohn's methods, based on a priori L2 estimates, give only L2 

existence proofs for solutions of the C-R equations. (After Kohn's work 
appeared Hörmander [9] gave a simpler existence proof, using weighted L2 

estimates, in which boundary problems are completely circumvented!) 
Several explicit solutions have been constructed by the use of integral 
formulas, in particular, those of Henkin [8] and Ramirez [18]. Kerzman [10], 
Grauert and Lieb [6], Overlid [17], and others have obtained estimates for 
these solutions in terms of LP and Lipschitz norms. 

Recently Greiner and Stein were able to give an explicit construction of 
Kohn's solution and to obtain from this construction optimal estimates in Lp 

and other norms. The book under review is an exposition of this work, 


