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On numbers and games, by J. H. Conway, Academic Press, London, New 
York, San Francisco, 1976, ix + 238 pp., $26.50. 

Surreal numbers, by D. E. Knuth, Addison-Wesley, Reading, Massachusetts, 
1974, 119 pp., 

And more than everything my son, o beware: 
the making of many books without end; 
and excessive studiousness, tiredness of flesh. 

(Translated by Bill from Ecclesiastes XII, 12.) 

Some readers know to play the game of nim well, fewer play a perfect 
annihilation game, and nobody knows whether there exists an opening move 
in chess that will guarantee a win for white. These games and many more, 
belong to the family of combinatorial games, by which we mean the set of all 
two-player perfect-information games without chance moves and with 
outcomes lose or win (and sometimes: dynamic tie). The motivation for 
ONAG may have been, and perhaps was-and I would like to think that it 
was-the attempt to bridge the theory gap between nim-like and chess-like 
games. 

Why is there a gap? 
Every combinatorial game can be described as a directed graph called 

game-graph, whose vertices are the game positions, and (u, v) is a directed 
edge if and only if there is a move from position u to position v. Denote by N 
the set of all positions from which the Next (first) player can force a win; by 
P the set of all positions from which the Previous (second) player can force a 
win; and by T the set of all (dynamic) Tie positions, which are positions from 
which no player can force a win and therefore both can avoid losing. In an 
acyclic game-graph there cannot be any tie positions. The N, P, T classi
fication of any game graph R = (V, E) can be determined in 0(\V\ + \E\) 
steps [8]. For both nim and chess, a finite game-graph can be constructed and 
the N, P, T classification can be determined. So both games are solvable in 
principle. 

If we play nim with n piles, each pile containing at most k tokens, then the 
game-graph contains (k + \)n vertices. Suppose that in (generalized) chess 
played on an « X « board there are k different pieces. If k is about n2/2, 
then the game-graph of chess contains O (2"2) vertices. So both game-graphs 
have exponentially many vertices, and thus both games appear intractable in 
the usual sense of computational complexity [1, Chapter 10], [14, Chapter 9], 
namely a computation appears to be required which is asymptotically 
exponential. 

From a computational efficiency standpoint, the essential difference 
between nim and chess is that nim can be viewed as a disjunctive compound 
(sum) of independent games, namely the individual piles. A disjunctive 
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compound of games is a finite collection of games. Each player at his turn 
selects one game and makes a legal move in it. The player first unable to 
make a move is the loser. Applied to nim, this enables replacement of the 
game-graph containing (k + 1)" vertices by the game-graph of a single pile, 
which makes the strategy of nim tractable, i.e., polynomial in n. But for 
chess-like games no reduction of game-graphs is known. Therefore they 
appear intractable at present. In fact, some combinatorial games [9], [16] can 
be proved to be JVP-hard (terminology defined in [14, Chapter 9]). But this 
complexity approach is not at all pursued in ONAG, in which inductive 
constructions are the order of the day. 

What enables the replacement of large by small game-graphs in nim-like 
games, such as those considered in [12], is a tool called the (classical) 
Sprague-Grundy function. The tool is useful for combinatorial games without 
dynamic ties in which the first player unable to move is the loser, the other 
the winner. This tool breaks down for the more complex games. Here are 
some of the properties of the more sophisticated games which damage or 
destroy the existence or applicability of the (classical) Sprague-Grundy 
function. 

I. Existence of dynamic ties. A polynomial strategy can be recovered for this 
case by defining a generalized Sprague-Grundy function [6], [8], [15]. This 
theory is illustrated in two and a half pages in ONAG by means of a sample 
game called "Traffic Jams". 

II. Various interactions between game tokens, including jump and capture 
rules. An example is Welter's game (Chapter 13 of ONAG), which is played 
on a semi-infinite linear board with a finite number k of coins, at most one 
per square (Figure 1). The squares are numbered 0, 1, 2 , . . . from the left. 
Either player at his turn selects a coin and moves it to any unoccupied square 
with a lower number. In particular, any coin is allowed to bypass other coins. 
The game ends when the loser is unable to move because the coins are 
jammed in positions 0, 1 , . . . , k - 1. 

I 3 4 8 9 10 

o O P O O 
FIGURE 1. A typical position in Welter's game 

Welter gave a partial analysis of the game [17]. Conway gives a complete 
theory (except for one open problem of secondary importance) which is 
rather curious, based on a mating function and an animating function (named 
after addition, wm-addition and preserving the mating function), which uses 
both ordinary and nim-addition. 

Another example where tokens interact is the set of annihilation games, in 
which two colliding tokens get annihilated and go out of the game. Their 
game-graphs can be replaced by sufficiently small graphs (in the form of 
so-called contrajunctive compounds rather than disjunctive compounds), so 
that the strategy becomes polynomial if somewhat intricate [7]. 
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III. Partizanship of games. A game is called impartial if the options of both 
players are identical for each position in the game. Otherwise it is partizan. 
Nim-like games are impartial; checkers, chess and go are partizan. It is the 
area of partizan games in which the main impact of ONAG lies, and from 
which the motivation for SUN emerges. 

Normally in a review, one can refer to the book's theory x and Theorem^, 
with which the readership is reasonably familiar, and then comment about 
the author's approach in selecting them, illuminating them, fusing them 
together, proving them, etc. ONAG, on the other hand, is a highly original 
research book (including many applications), and its main ideas have not yet 
been disseminated widely. Therefore we give below a very brief and informal 
summary of Conway's theory of partizan games, which will sometimes be 
called simply games below. 

Games are defined inductively. If GL and GR are any two sets of games, 
then there is a game {GL\GR}. All games are constructed in this way. 

Numbers constitute a subclass, and they are also defined inductively: if NL 

and NR are any two sets of numbers, and no member of NL is > any 
member of NR, then there is a number {NL\NR}. All numbers are construc
ted in this way. 

The empty set { } serves to define the number created on day 0: { | } = 0. 
On day 1, the numbers { |0} = — 1, {0| } = 1 and the game {0|0} = * are 
created, and on day 2 we get, among other numbers, {0|1} = \9 and among 
other games, {1| - 1} = ±1, {0|*} = | (see the "partizan game-graphs" in 
Figure 2, in which vertices are game positions, and edges slanted in south
westerly direction denote moves of Left; in south-easterly direction moves of 
Right). Note that these special cases obey the following rules, which turn out 
to hold in general: G > 0 if Left can win (i.e., can make the last move); 
G < 0 if Right can win; G = 0 if the second player can win; G\\0 (G is 
fuzzy) if the first player can win. Because of these properties, the deter
mination of the value of G of a partizan game is of fundamental importance 
to the theory. 

0 -I I * 1/2 ±1 • 

• \ / A 
FIGURE 2. A few partizan games 

The fuzzy games are those which are neither positive nor negative nor zero. 
For example {x\y} with x > 0 > y is fuzzy. There are also hot and cold 
games. For example {x\y} with x > y is hot (with temperature x — y\ and all 
numbers are cold. The temperature theory, complete with thermographs and 
cooling devices, is designed to bound the values of hot games. The important 
Simplicity Theorem (rather: a special case thereof) determines the values of 
numerical games. It states that if NL and NR are sets of numbers and 
{NL\NR} is a number, then it is the simplest number N which is > all 
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numbers in NL and < all numbers in NR. The order of simplicity is: integers 
with increasing absolute value, followed by the dyadic rationals with increas-
sing denominators, followed by all other numbers. 

In a disjunctive compound of two games G, H, a player selects one game 
and makes a legal move in it. This suggests the following inductive definition 
for the sum: 

G + H = {GL + H, G + HL\GR + H, G + H*}. 

If we define - G = { — GR\ - GL}> we can verify (e.g., Figure 2) that 
3 + \ « 1, in the sense that ^ + ^ - 1 = 0, i.e., the second player can win the 
disjunctive compound of the games \, \, - 1. (Now show that {0||} * \ + 
f + *.) Also multiplication can be defined. 

Games are ordered by their birthday and partially ordered by <. The 
numbers created on the finite days comprise the set of all dyadic rationals. 
On day <o we get, for example, the ordinal number w * {0, 1, 2 , . . . | }, the 
infinitesimal number l/<o = {0|1, | , \9 | , . . . }, the transcendental numbers 
ir, e, and {0.1, 0.101, 0.10101, . . . |0.11, 0.1011, 0.101011, . . . } - x (in 
binary notation), which turns out to be j . (Verify that JC + JC + J C « 1 . ) 

The game | is positive (Left can win!) but it is smaller than every positive 
infinitesimal number. In particular, Î < 1/co. One gets an exciting and weird 
world of games. An example is the game domineering, played with dominoes 
each of which covers precisely two squares of an n X n chessboard. Left 
places his dominoes vertically, Right horizontally. Dominoes must not over
lap, and the player first unable to move is the loser. Note that for example for 
n = 2, the game has the hot value ± 1 . Either player, by playing in ±1 , 
reserves a further move for himself, while his opponent is unable to move. 

After a while of playing domineering, the board may split into several 
disconnected regions, and the game becomes a disjunctive compound of 
several games. It is best for each player to move in a hottest game. 

Left-Right Hackenbush, also described in [10], is a cold game played on a 
graph whose vertices are painted Lilac and Red. At least one vertex in each 
component is grounded. Left (Right) deletes a Lilac (Red) edge together with 
all vertices no longer connected to ground, and their incident edges (of either 
color). The game has a very curious polynomial strategy if the graph is a tree. 
But for a general graph, Berlekamp [3] showed that even the special case of 
bipartite redwood furniture is NP-hard. 

If all edges are painted Ivory, the game is impartial. Its theory makes use of 
a mating-type function. Of course there is also Hackenbush Hotchpotch in 
which there exist edges of all three colors. For this game wop and sop 
functions come in handy, which are generalizations of animating functions. 

In addition to the analysis of many special families of impartial and 
partizan games such as the octal games of Guy and Smith of which Kayles is 
an example [12], tame restive and restless games; even, odd and prime games; 
shrinking rectangles, twisted Bynum's game and contorted fractions; cutcake, 
Col, Snort and others-many general theories and algorithms are developed in 
ONAG. For example, an algorithm is given for determining for any game G 
whether it is a number or not, and, in the latter case, determining all numbers 
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x and y satisfying x > G, y < G by means of two Dedekind sections. 
Algorithms for simplifying the form of G are also given. The theory of 
impartial games is deduced as a special case of the theory of partizan games. 
A theory of misère play (when the last player to move loses) is given. In 
addition to disjunctive compounds, theories for other conventions of playing 
a set of games are given, such as conjunctive compounds (make a move in 
each component game which has not yet ended) and selective compounds 
(select some of the component games and make a move in each of the 
selected ones) and many variations including compounded compounds. 

In the last few sections a theory of the small world complete with atomic 
weights, atomic mass thermography and superstars is given, which is designed 
to bound the values of small games. It was developed jointly by Conway and 
Simon Norton. A game G is small if — x < G < x for every positive number 
x. Since f > 0, —f = i < 0, *| |0 and 0 are small games, the small world is a 
microcosm of the large world. The theory of the small world is not yet 
complete, and the author concludes with: "We leave these questions to 
others, who will surely find many other problems to puzzle them and wonders 
to amaze and amuse them in this curious world of games. Only a certain 
feeling of incompleteness prompts us to add a final theorem. 

THEOREM 100. This is the last theorem in this book. 

(The proof is obvious.)" 
The above encapsulates the flavor of the book, mainly its First (games) 

Part, which contains the heart of the treatise, but is intimately linked to the 
Zeroth (numbers) Part. The latter starts with the inductive construction of 
numbers given above, and the inductive definitions of < , + , — , X. They 
generate a real closed field with a very rich structure, though they comprise 
only the proper subclass of all numbers. These are ordered by their birthday 
and also by <. The remainder of the Zeroth Part is devoted to proving that it 
is a field containing the real and ordinal numbers, and to an investigation of 
various properties of this field, including the Simplicity Theorem. 

ONAG is a deep-reaching book. It can be read on at least three levels. It 
can be read cursorily, just enjoying some of the games and their curious 
algorithms. It can be read diving into the deeper waters and working out the 
proofs of the main results. This is hard in some places, since the book is 
written concisely. And it can be read with the purpose of exploring some of 
the research problems which suggest themselves almost on every page. The 
richness of the theory has already induced research activities in a number of 
fields. Berlekamp has devised a representation of numbers whose integer and 
fractional parts are expressed in unary and binary respectively, which does 
not require an explicit binary point and sign bit. This representation arises 
naturally in describing the value of a Left-Right Hackenbush string, and can 
be used for the internal number representation in a computer [2], Li extended 
the theory of numerical partizan games to include cycles [13]. Berlekamp, 
Conway and Guy pick up some of the threads of ONAG in Winning Ways 
[3]. Martin Kruskal is exploring and developing the ramifications of 
Conway's number construction. And Knuth used it in SUN for a unique 
purpose which we are now going to discuss. However, as Martin Gardner 
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remarked, hard-core set theorists do not appear to have discovered the theory 
yet. 

SUN relates the story of Alice and Bill who ran away from it all to find 
themselves on the shores of the Indian Ocean. But soon enough they start to 
crave "for a book to read-a«y book, . . . , even a math textbook." It is 
therefore not surprising that they stumble across a broken off rock on which 
the story of the creation is inscribed in Hebrew, which Bill translates as 
follows: "In the beginning, everything was void,. . . the first rule: Every 
number corresponds to two sets of previously created numbers, such that no 
member of the left set is greater than or equal to any member of the right 
set And the first number was created from the void left set and the void 
right set. Conway called this number 'zero', and said that it shall be a sign to 
separate positive numbers from negative numbers. Conway proved that zero 
was less than or equal to zero, and he saw that it was good. And the evening 
and the morning were the day of zero. On the next day, two more numbers 
were created, one with zero as its left set and one with zero as its right set. 
And Conway called the former number 'one', and the latter he called 'minus 
one'. And he proved that minus one is less than but not equal to zero and 
zero is less than but not equal to one. And the evening..." That is where 
the rock breaks off. 

In the next four chapters our two heroes prove that — 1 < 0 < 1 , J C < J C , 
the transitive law, the ordering of numbers by < and other properties. In 
Chapter 6 they anticipate the events of the third and in fact of the nth day of 
creation. After they start to wonder in what sense these entities are numbers, 
they find the second part of the rock which Bill again manages to translate 
from Hebrew. It contains addition and multiplication rules, and: " . . . When 
the numbers had been created for infinitely many days, the universe itself 
appeared. And the evening and the morning were N day . . . ". Alice and Bill 
now continue their inquisitive explorations and prove commutativity and 
associativity of addition, and properties such as x + 0 = x, x — x = 0. They 
decide that the "universe" is the set of numbers created on day <o, like } , 
w , . . . , continue to construct numbers created on subsequent days, and 
discover elementary properties of multiplication. 

The message of SUN is not in what it presents-it covers less than the first 
twenty pages of ONAG-but in how it presents it. In a postscript Knuth states 
that the book is intended primarily for college mathematics students at about 
the sophomore or junior level. He adds, "Of course, I wrote this mostly for 
fun, . . . but I must admit that I also had a serious purpose in the back of my 
mind. Namely, I wanted to provide some material which would help to 
overcome one of the most serious shortcomings in our present educational 
system, the lack of training for research work My primary aim is not 
really to teach Conway's theory, it is to teach how one might go about 
developing such a theory. Therefore as the two characters in this book 
gradually explore and build up Conway's number system, I have recorded 
their false starts and frustrations as well as their good ideas. I wanted to give 
a reasonably faithful portrayal of the important principles, techniques, joys, 
passions and philosophy of mathematics, so I wrote the story as I was 
actually doing the research myself (using no outside sources except a vague 
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memory of a lunchtime conversation I had had with John Conway almost a 
year earlier)." 

This aim is achieved beautifully. The frustrations and joys of Alice and Bill 
flow forth with a true-life quality. For example, they get entangled in circular 
arguments while trying to prove the transitive law. Luckily they finally 
succeed in extricating themselves by discovering induction on the sum of the 
birthdays of the numbers involved. Or, when after some struggle, they come 
up with the correct definition of sum, they are struck by disaster when they 
realize that they neglected to show that the sum is a number! This upsets 
some of their previous results. While trying to mend this hole, clever Alice is 
naturally led to the discovery of pseudo-numbers(= games-in Conway's 
language). 

These creative activities lead Bill and Alice to the conclusion that 
mathematics is such a drag in school because it is presented as a finished 
product in the Landau telegraphic style of lemma, proof, theorem, proof,.... 
They advocate, instead, a class atmosphere conducive to the discovery of 
theorems, or at least an education encouraging one to ask one's own 
questions and work at one's own solutions to problems presented in a 
mathematical text-book. Whether such an approach will actually find the 
wide acceptance it deserves is of course a question which only time will 
answer. 

SUN is an exciting and stimulating book which "turns on" the reader. Its 
interest is enhanced by a list of 22 choice exercises given at the end, the last 
few of which were suggested by Conway. Exercise 19, for example, asks for a 
pseudo-number/? such that/J + />** . It is parenthetically stated that this is 
surprisingly difficult and leads to interesting subproblems. Of course once 
Alice and Bill will have discovered the application to games-which is 
mentioned in a short remark at the end of the book-and once they get used to 
handling them in the form of graphs (Figure 2), they will not experience too 
much difficulty with this problem. 

Both books have much less than the average number of misprints. The 
reader of ONAG is perhaps kept slightly wondering by the fact that the 
relations < , < as defined for games in the First Part are not proved 
consistent with such relations as defined for numbers (and games!-Chapter 1) 
in the Zeroth Part (and again on p. 78), nor is the necessity of such a proof 
indicated. It is, in fact, advantageous to give this consistency proof at a fairly 
early stage. Then game-theoretic considerations can be used to prove many 
properties of numbers as well as of games in a simple manner. The index 
suggests that Welter exists ("Welter, C. P., 153; his game, 153") but on p. 153 
we find only "Welter's game" and a literary citation " . . . And Welt'ring in 
his blood", which suggests that Welter is used figuratively. At any rate, 
reference [17] is not given. Reference 17 of ONAG is incomplete. At some 
places the discussion is a bit too terse for my taste, for example in the 
description of games with dynamic ties, where the requirement for a strategy 
of proper move selection, in addition to the marking of values on the vertices, 
is just barely hinted at. The chapter letterheads come without chapter 
numbers-perhaps because the editors noticed that at the beginning the class 
of numbers was void-which sometimes makes browsing and searching a bit 
awkward. 
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The late Dr. I. Breuer, a Jerusalem scholar and author of many books, once 
confided to me that he was much bothered by Ecclesiastes' strong 
discouragement of the writing of many books. He was further intrigued by 
the end of the verse which mentions excessive studiousness and tiredness of 
flesh. What is the connection to writing books? After pondering the problem 
he put forth the following explanation. Books which result from the tiredness 
of the flesh on which the author sits for hours without end because of 
excessive studiousness-those books my son, o beware of. But books which are 
inspired by the grey cells and elevate and please the spirit, those books it is 
pleasing to write; in fact, King Solomon after all did conceive himself 
Ecclesiastes, Proverbs and the Song of Songs!1 

ONAG in Hebrew means pleasure. Especially spiritual pleasure. But not 
always pure spiritual pleasure. The word allows the suggestion of pleasure 
triggered by subtle mixtures of spiritual and physical contentment, such as the 
SUN rays lighting and warming the world we live in. 
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Theory of modules, by Alexandra Solian, John Wiley & Sons Limited, 
London, New York, Sydney, Toronto, 1977, x + 420 pp., $26.50. 

Somewhere between saying too little and saying too much lies good 
exposition. Most of the pitfalls are located to one side or the other of that 
rather narrow ridge where the essential ideas are provided without a deluge of 
trivialities. Being one who tends to fall off the ridge at regular intervals, it 
interests me to speculate on the reasons behind difficult lecturing or writing 
styles. One reason, of course, is inexperience, and I believe that criticism of 
exposition is an important part of graduate education.. In seminar 
presentations, I feel that students are too often let off the hook because what 
they are doing is mathematically correct, even though what they are saying 
may be devastating for the understanding of the other participants. However 
teaching someone to teach is difficult, and perhaps dangerous too, if one is 
not absolutely sure of the difference between what enlightens and what 
confuses. Let us consider some of the other possible reasons behind 
incomprehensibility. 

In my early years I was aware that I invariably understood some people 
and rarely understood others, without attributing this to any particular 
qualities of those involved. It was only later that I realized that those whom I 
could follow tended to be secure individuals, with enough self-confidence to 
tell me something I already knew, or remind me of something I knew a week 
ago. We are probably all a little sensitive to the reply, "But that's trivial," 
especially when it concerns something which we have found anything but 
trivial, and perhaps those who are least affected by the reply are by and large 
those who refrain from using it. When someone begins an explanation by 
assuming that his audience is plunged into the matter as deeply as he is, I 
usually feel that he is protecting himself from something. But of course 
insecurity is not always the reason for a bulldozer style. Sometimes it is a 
simple matter of insensitivity, an inability to realize that others are not 


